Схема импульсного нейтронного генератора

 

Полезная модель относится к разведке и обнаружению скрытых масс или объектов с использованием радиоактивности, конкретно к разработке схем питания импульсных нейтронных генераторов. Техническим результатом полезной модели является повышение надежности, повышение стабильности, компактность. Технический результат достигается тем, что схема импульсного нейтронного генератора выполнена в виде модуля из последовательно соединенных блоков электроники, коммутации и блока нейтронной трубки, причем блок электроники содержит фильтр питания, схему включения/выключения питания, схему формирования импульса управления, блок коммутации содержит повышающий трансформатор с выпрямителями источника питания блоков коммутации и нейтронной трубки, схему формирования импульса поджига коммутатора, делитель зарядного напряжения в цепи обратной связи и коммутатор, блок нейтронной трубки содержит схему формирования ускоряющего импульса напряжения на нейтронную трубку, схему питания ионного источника нейтронной трубки, схему формирования импульса поджига нейтронной трубки и нейтронную трубку. 1 с.п. ф. 2 илл.

Полезная модель относится к разведке и обнаружению скрытых масс или объектов с использованием радиоактивности, конкретно к разработке схем питания импульсных нейтронных генераторов.

Известно устройство, содержащее последовательно соединенные автогенератор генератор управляемых импульсов, инвертор напряжения, разрядник и накопительный конденсатор, выход которого соединен с излучателем нейтронов. В устройство введены датчик разряда, содержащий трансформатор тока, и блок первичного запуска датчика разряда, которые обеспечивают подачу на генератор нейтронов импульсного напряжения с нормированной амплитудой независимо от сбоев в работе устройства. Патент Российской Федерации №2229751, МПК: G21G 4/02, 2004 г.

Устройство громоздко, состоит из раздельных комплексов: блока наземной аппаратуры, блока управления и питания и скважинного прибора, скважинный прибор с источником нейтронов, блок регистрации нейтронов и гамма-квантов, что снижает их надежность в эксплуатации.

Известна схема импульсного нейтронного генератора с элементами запуска, коммутации и блоком нейтронной трубки для импульсного нейтронного каротажа, состоящая из наземной аппаратуры управления и временного анализатора, блока питания, регистратора и скважинного прибора, состоящего из импульсного генератора быстрых нейтронов на базе ускорительной трубки со схемой запуска, содержащей импульсные высоковольтные трансформаторы, накопительный конденсатор и управляемый коммутирующий элемент радиометра, блоков питания генератора нейтронов, детектора радиоактивного излучения и электронной схемы, в схеме запуска ускорительной трубки между накопительным конденсатором и первичными обмотками импульсных высоковольтных трансформаторов подключен неуправляемый коммутирующий элемент, а в цепь управляемого коммутирующего элемента между его анодом и точкой

соединения неуправляемого коммутирующего элемента с обмотками импульсных трансформаторов подключен дополнительный конденсатор. Патент Российской Федерации №448784, МПК: G01V 5/10, 2000 г. Прототип.

Схема не стабильна и не надежна при работе в автономном режиме, громоздка.

Техническим результатом полезной модели является повышение надежности, повышение стабильности, компактность.

Технический результат достигается тем, что схема импульсного нейтронного генератора с элементами запуска, коммутации и блоком нейтронной трубки выполнена в виде модуля из последовательно соединенных блоков электроники, коммутации и блока нейтронной трубки, причем блок электроники содержит фильтр питания, схему включения/выключения питания, схему формирования импульса управления, блок коммутации содержит повышающий трансформатор с выпрямителями источника питания блоков коммутации и нейтронной трубки, схему формирования импульса поджига коммутатора, делитель зарядного напряжения в цепи обратной связи и коммутатор, блок нейтронной трубки содержит схему формирования ускоряющего импульса напряжения на нейтронную трубку, схему питания ионного источника нейтронной трубки, схему формирования импульса поджига нейтронной трубки и нейтронную трубку, причем в блоке электроники выходы фильтра питания и схемы включения/выключения питания соединены с входами гальванической развязки вторичных источников питания, а выходы гальванической развязки вторичных источников питания соединены с входами схемы включения/выключения питания, стабилизированного низковольтного вторичного источника питания и управляемого автогенератора, выход стабилизированного низковольтного вторичного источника питания соединен с входами схемы формирования импульсов управления, управляемого автогенератора и схемой контроля, выход схемы формирования импульсов управления соединен с входами управляемого

автогенератора, схем формирования импульсов управления, а также снабжен выводом для соединения со схемой формирования импульса поджига коммутатора, в блоке коммутации один выход повышающего трансформатора с выпрямителями источника питания блоков коммутации и нейтронной трубки соединен с одним из входов схемы формирования импульса поджига коммутатора, соединенной коммутатором, второй выход повышающего трансформатора соединен с входами делителя зарядного напряжения в цепи обратной связи и коммутатора, а также снабжен выводом для соединения со схемой питания ионного источника нейтронной трубки, входы схем формирования ускоряющего импульса напряжения на нейтронную трубку, питания ионного источника нейтронной трубки и формирования импульса поджига нейтронной трубки объединены, а выходы каждой схемы соединены с входами нейтронной трубки.

Сущность полезной модели поясняется на фиг.1 и фиг.2.

На фиг.1 представлена схема нейтронного генератора, где: БЭ - блок электроники; БК - блок коммутации; БТ - блок трубки;

1 - фильтр питания, 2 - схема включения/выключения питания, 3 - схема формирования импульса управления, 4 - гальваническая развязка вторичных источников питания, 5 - стабилизированный низковольтный вторичный источник питания, 6 - автогенератор управляемый, 7 - повышающий трансформатор с выпрямителями источника питания БТ и БК, 8 - схема формирования импульса поджига коммутатора, 9 - делитель зарядного напряжения в цепи обратной связи, 10 - коммутатор, 11 - схема формирования ускоряющего импульса напряжения на нейтронную трубку, 12 - схема питания ионного источника нейтронной трубки, 13 - схема формирования импульса поджига нейтронной трубки, 14 - нейтронная трубка, 15 - схема контроля.

На фиг.2 представлены процессы, происходящие в нейтронном генераторе, где:

t 0 - момент подачи питания на вход импульсного нейтронного генератора (ИНГ)

t1 - поступление сигнала, разрешающего подачу питания на схему ИНГ - начало работы источника питания БТ и БК, начало зарядки накопительных конденсаторов БТ

t2 - сигнал обратной связи на выключение источника питания БТ и БК

t3 - сигнал обратной связи на включение источника питания БТ и БК (подзарядка)

t4 - подача управляющего импульса на срабатывание ИНГ, подача команды на прекращение работы источника питания БТ и БК, начало формирования импульса запуска коммутатора

t5 - срабатывание коммутатора, начало формирования ускоряющих импульсов на нейтронную трубку и тока через ионный источник

t6 - срабатывание нейтронной трубки - начало нейтронного импульса

t7 - окончание нейтронного импульса

t8 - окончание переходных процессов в схеме питания нейтронной трубки, снятие запрета на работу источника питания БТ и БК, начало повторного процесса подготовки ИНГ к срабатыванию нейтронной трубки

t9 - снятие сигнала, разрешающего работу источника питания БТ и БК, начало разряда накопительных конденсаторов БТ и БК

t10 - снятие питания с ИНГ.

Схема работает следующим образом.

В момент времени t 0 (фиг.2) на фильтр питания 1 подается внешнее питание. При поступлении разрешающего сигнала t1 начинают работать все источники питания генератора: гальваническая развязка вторичных источников питания 4, стабилизированный низковольтный вторичный источник питания 5, автогенератор управляемый 6 и начинают заряжаться накопительные конденсаторы схемы питания 12 и 13 нейтронной трубки 14 и схемы формирования импульса поджига коммутатора 8. При достижении

зарядного напряжения в момент t 2 сигнал обратной связи от делителя зарядного напряжения в цепи обратной связи 9 останавливает работу источника высоковольтного питания 2 (t3), при снижении напряжения обратная связь опять включает источник питания 2. Управляющий импульс (t4) на срабатывание генератора поступает на схему формирования импульса поджига коммутатора 8.

Сформированный управляющий импульс прикладывают к поджигающему зазору коммутатора 10. В момент времени t5 коммутатор 10 переходит в проводящее состояние, и начинают формироваться положительный и отрицательный ускоряющие импульсы и импульс тока через ионный источник нейтронной трубки 14. Образовавшиеся в токе источника, ионы дейтерия попадают в ускоряющий зазор, ускоряются высоким напряжением и бомбардируют мишень, где в результате реакции 1H2+ 1H32He4+n образуются нейтроны с энергией 14 МэВ.

Схема импульсного нейтронного генератора с элементами запуска, коммутации и блоком нейтронной трубки, отличающаяся тем, что она выполнена в виде модуля из последовательно соединенных блоков электроники, коммутации и блока нейтронной трубки, причем блок электроники содержит фильтр питания, схему включения/выключения питания, схему формирования импульса управления, блок коммутации содержит повышающий трансформатор с выпрямителями источника питания блоков коммутации и нейтронной трубки, схему формирования импульса поджига коммутатора, делитель зарядного напряжения в цепи обратной связи и коммутатор, блок нейтронной трубки содержит схему формирования ускоряющего импульса напряжения на нейтронную трубку, схему питания ионного источника нейтронной трубки, схему формирования импульса поджига нейтронной трубки и нейтронную трубку, причем в блоке электроники выходы фильтра питания и схемы включения/выключения питания соединены с входами гальванической развязки вторичных источников питания, а выходы гальванической развязки вторичных источников питания соединены с входами схемы включения/выключения питания, стабилизированного низковольтного вторичного источника питания и управляемого автогенератора, выход стабилизированного низковольтного вторичного источника питания соединен с входами схемы формирования импульсов управления, управляемого автогенератора и схемой контроля, выход схемы формирования импульсов управления соединен с входами управляемого автогенератора, схемой формирования импульсов управления, а также снабжен выводом для соединения со схемой формирования импульса поджига коммутатора, выходы фильтра питания и схемы включения/выключения питания соединены с входами гальванической развязки вторичных источников питания, а выходы гальванической развязки вторичных источников питания соединены с входами схемы включения/выключения питания, стабилизированного низковольтного вторичного источника питания и управляемого автогенератора, выход стабилизированного низковольтного вторичного источника питания соединен с входами схемы формирования импульсов управления, управляемого автогенератора и схемой контроля, выход схемы формирования импульсов управления соединен с входами управляемого автогенератора, схемой формирования импульсов управления, а также снабжен выводом для соединения со схемой формирования импульса поджига коммутатора, в блоке коммутации один выход повышающего трансформатора с выпрямителями источника питания блоков коммутации и нейтронной трубки соединен с одним из входов схемы формирования импульса поджига коммутатора, соединенной коммутатором, второй выход повышающего трансформатора соединен с входами делителя зарядного напряжения в цепи обратной связи и коммутатора, а также снабжен выводом для соединения со схемой питания ионного источника нейтронной трубки, входы схем формирования ускоряющего импульса напряжения на нейтронную трубку, питания ионного источника нейтронной трубки и формирования импульса поджига нейтронной трубки объединены, а выходы каждой схемы соединены с входами нейтронной трубки.



 

Похожие патенты:

Устройство относится к электротехнике и светотехнике и предназначено для подключения светодиодного оборудования, в частности, светодиодных лент, требующих, в отличие от светодиодных ламп, использования стабилизированных источников питания постоянного тока. Некоторые сложные уличные и потолочные светодиодные светильники используют в своей конструкции светодиодные ленты.

Изобретение относится к технике радиосвязи и может найти применение в конструкциях антенных устройств, обеспечивающих работу в двух или более различных диапазонах длин волн

Полезная модель относится к области электрических трансформаторов, преобразователей энергии и может быть использовано в качестве трансформатора в науке, связи, промышленности и других применениях

Данная полезная модель генератора является нейтронной техникой и служит для создания импульсных потоков нейтронов. Возможные сферы применения полезной модели: ядерная техника, технология и геофизика, нейтронная физика, анализ материалов.
Наверх