Однокоординатный детектор

 

Полезная модель относится к регистрации и обнаружению источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Техническим результатом полезной модели является расширение энергетического диапазона регистрации проникающих излучений и их видов, повышение эффективности сбора света, возникающего в сцинтилляторе при прохождении через него ионизирующей частицы и его транспортировки к фотодиодам, повышение пространственного разрешения регистрации ионизирующей частицы.

Технический результат достигается тем, что блок выполнен в виде, по крайней мере, одной сцинтиллирующий пластины, содержащей, по крайней мере, на одной стороне параллельный ряд светопереизлучающих волокон, светопереизлучающие волокна расположены в средней плоскости сцинтиллирующей пластины или между двумя сцинтиллирующими пластинами, а фотодиоды светопереизлучающих волокон расположены, по крайней мере, на одном торце пластины и подключены к схеме регистрации с выходным регистром.

1 с.п.ф 2 илл.

Полезная модель относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Известен многослойный детектор, выполненный в виде блока из слоев полимерных сцинтиллирующих оптических элементов, изготовленных из набора материалов, плотность которых монотонно возрастает от первого ряда к последнему слою и фотоприемники. Рекламный листок Института физики твердого тела Российской Академии Наук, Черноголовка, Московской области. 2005 г. «Антитеррористические просвечивающие установки для экспрессного выявления взрывчатых веществ». Недостатком такого детектора и установки в целом является необходимость получения. изображения скрытых предметов при просвечивании рентгеновским излучением конкретных предметов в явочном "порядке. Детектор предназначен для регистрации лишь одного типа излучения, а именно, рентгеновского и не может регистрировать нейтронное излучение.

Известен координатно-чувствительный детектор, содержащий блок из водородосодержащих сцинтиллирующих оптических элементов, уложенных рядами попеременно в двух взаимно перпендикулярных направлениях, и фотоприемники. В детекторе сцинтиллирующие оптические элементы выполнены в виде стержней с прямоугольным сечением, на одной из граней каждого стержня выполнены пазы, в пазах размещены сцинтиллирующие волокна, на торцах волокон расположены фотодиоды, фотодиоды обеспечены выводами для соединения со схемами регистрации сцинтилляционных вспышек. Патент Российской Федерации на полезную модель №54440, МПК: G01Т 3/06, 2006 г. Прототип. Прототип обладает

сравнительно низкой технологичностью изготовления детектора (обработка каждого отдельного стержня, выполнение в нем канавок и т.п.).

Задачей полезной модели является разработка технологичного детектора для визуализации пространственного распределения плотности потока ионизирующих излучений с улучшенными свойствами: повышенной эффективностью, стабильностью, механической прочностью, сроком службы. Разработка детекторов практически любой площади, не требующих высоковольтного питания, специальных помещений и т.п.

Техническим результатом полезной модели является расширение энергетического диапазона регистрации проникающих излучений и их видов, повышение эффективности сбора света, возникающего в сцинтилляторе при прохождении через него ионизирующей частицы и его транспортировки к фотодиодам, повышение пространственного разрешения регистрации ионизирующей частицы, упрощение конструкции, технологичность.

Технический результат достигается тем, что в однокоординатном детекторе, содержащем блок сцинтиллирующих оптических элементов со светопереизлучающими волокнами, блок выполнен в виде, по крайней мере, одной сцинтиллирующий пластины, содержащей, параллельный ряд светопереизлучающих волокон, расположенных в средней плоскости сцинтиллирующей пластины или между двумя сцинтиллирующими пластинами, а фотодиоды светопереизлучающих волокон расположены, по крайней мере, на одном торце пластины и подключены к схеме регистрации с выходным регистром.

Сущность полезной модели поясняется на фиг.1-2. На фиг.1 представлена схема однокоординатного детектора, где: 1 - сцинтиллирующая пластина, 2 - светопереизлучающие волокна, 3 - фотодиоды. На фиг.2 схематично представлена электронная схема с двумя усилителями, двумя дискриминаторами и схемой совпадений, где: 3 - фотодиоды, 4 - первый аналоговый усилитель, 5 - второй аналоговый

усилитель, 6 - первый аналоговый выход, 7 - второй аналоговый выход, 8 - первый дискриминатор, 9 - второй дискриминатор, 10 - схема совпадений.

Однокоординатный детектор (фиг.1) состоит из сцинтиллирующей пластины 1, выполненной из пластмассы, органического кристалла, кристаллического сцинтиллятора, сцинтиллирующего стекла с встроенными светопереизлучающими волокнами 2, на торцах которых расположены фотодиоды (фотоприемные устройства). При прохождении через однокоординатный детектор ионизирующей частицы сигнал возникает в нескольких ближайших фотодиодах 2, количество которых определяется количеством рожденных фотонов. Определение координаты сцинтилляционной вспышки проводят на основании сравнения амплитуд сигналов поступивших с различных фотодиодов 2 и нахождения центра тяжести пространственного распределения этих сигналов. При прохождении через сцинтиллирующую пластину 1 ионизирующей частицы в ней рождаются фотоны, распространяющиеся во все стороны. Часть фотонов проходит через светопереизлучающие волокна 3, в которых первичные фотоны частично (примерно с вероятностью 0,8) захватываются и излучают вторичные фотоны с большей длиной волны. Частично (примерно 5%) вторичные фотоны за счет полного внутреннего отражения на границе волокно и его оболочка доходят до торца волокна, где попадают на фотоприемное устройство - фотодиоды 3. В зависимости от типа используемого фотоприемного устройства (ФЭУ или фотодиода) вторичные фотоны генерируют с вероятностью от 0,1 до 0,8 в фотоэлектроны. Полученный электронный сигнал поступает на вход электронной схемы (фиг.2), предназначенной для дискриминации и усиления сигнала. Электронная схема может содержать также элементы отбора сигналов по совпадениям или антисовпадениям. Амплитуда сигнала, поступающего с того или иного фотодиода, зависит от расстояния между светопереизлучающим волокном 2 и треком ионизирующей частицы. При

толщине сцинтиллирующей пластины 1, равной диаметру светопереизлучающего волокна 2, сигнал поступает только с двух смежных устройств. Пространственная координата определяется по соотношению сигналов поступивших с нескольких фотодиодов 3 во временном окне, устанавливаемом в зависимости от типа сцинтиллятора, и характеристик электронной схемы. Для улучшения пространственного разрешения на поверхности сцинтиллирующей пластины 1 расположены светопоглощающие (на фигурах не показаны) слои (пластины) из материала с тем же коэффициентом преломления и поглощающие свет от сцинтилляционной вспышки, распространяющийся в направления, где светопереизлучающие волокна 2 отсутствуют. При отсутствии светопоглощающих слоев (пластин) свет может попасть на светоперейзлучающие волокна 2 за счет полного внутреннего отражения на границе сцинтиллирующая пластина 1 - воздух, что приводит к меньшей зависимости сигнала от расстояния между светопереизлучающим волокном 2 и треком и ухудшению пространственного разрешения. Для уменьшения потерь света светоперейзлучающие волокна 2 со сцинтиллирующей пластиной 1 соединяют с помощью оптического контакта (клея) - иммерсионной среды с близким (или промежуточным для материалов волокна, сцинтиллятора коэффициентом преломления. Сцинтиллирующие пластины 1 со светопереизлучающими волокнами 2 и фотодиодами 3 покрыты светоотражающим (типа TYVEK) и светозащитным материалами (фирмы Дюпон). Светопереизлучающие волокна 2 обеспечивают эффективный сбор света, возникающего в сцинтиллирующей пластине 1 при прохождении ионизирующей частицы и транспортировке света. Фотодиоды 3 подключены к электронной схеме (плате), которая при поступлении сигнала с фотодиода 3 вырабатывает аналоговый сигнал, оцифровывает его и заносит в выходной регистр с указанием времени прихода, номера светопереизлучающего волокна 2 и амплитуды его сигнала (Фиг.2). Сигнал с

фотодиода 3 поступает на аналоговый усилитель 4 и/или 5, после которого аналоговый сигнал амплитудой 120 мВ на 1 МэВ поглощенной в сцинтиллирующей пластине 1 энергии частицы, длительностью примерно 100 нс, поступает одновременно на дискриминатор 8 и/или 9 с регулируемым порогом дискриминации и на соответствующий аналоговый выход. В случае применения двух фотодиодов 3 логические сигналы с дискриминаторов идут на схему совпадений 10. Если на обоих входах схемы совпадений 10 появляются сигналы, схема совпадений вырабатывает сигнал, который хранится в выходном регистре схемы. Внешний контроллер опрашивает выходные регистры схем совпадений 10 и в случае наличия в нем сигнала (запроса) осуществляет считывание сигнала с аналогового выхода для его передачи в компьютер для дальнейшей оцифровки и анализа. При этом регистрируется также время прихода запроса и номер регистра (номер фотодиода). Материал сцинтиллирующих пластин 1 для регистрации тепловых нейтронов представляет собой литий содержащее сцинтиллирующее стекло. Материал сцинтиллирующих пластин 1 для регистрации заряженных частиц представляет собой сцинтиллирующее стекло или пластмассовый сцинтиллятор. Материал сцинтиллирующих пластин 1 для регистрации гамма излучения представляет собой сцинтиллирующее стекло, пластмассовый сцинтиллятор или пластины из NaI(Tl) с выходными окнами с двух сторон из стекла. Для повышения пространственного разрешения однокоординатный детектор выполнен из нескольких слоев. При этом смежные слои выполнены с возможностью их плоско-параллельного перемещения относительно друг друга. Пространственная координата определяется из анализа амплитуд сигналов, поступивших с различных сцинтиллирующих пластин 1 и фотодиодов 3 однокоординатного детектора в целом. Фотодиоды 3 примыкают к торцам светопереизлучающих волокон 2 с зазором 0,2-0,3 мм.

Однокоординатный детектор, содержащий блок сцинтиллирующих оптических элементов со светопереизлучающими волокнами, на торцах которых расположены фотодиоды, фотодиоды снабжены выводами для соединения со схемами регистрации сцинтилляционных вспышек, отличающийся тем, что блок выполнен в виде, по крайней мере, одной сцинтиллирующий пластины, содержащей, параллельный ряд светопереизлучающих волокон, расположенных в средней плоскости сцинтиллирующей пластины или между двумя сцинтиллирующими пластинами, а фотодиоды светопереизлучающих волокон расположены, по крайней мере, на одном торце пластины и подключены к схеме регистрации с выходным регистром.



 

Наверх