Водогрейный водотрубный котел

 

Полезная модель относится к теплоэнергетике, в частности к конструкциям водогрейных аппаратов и может быть использована в системах отопления и горячего водоснабжения. Технический результат предлагаемой полезной модели - повышение энергетической эффективности по отношению к ранее известному котлу при сохранении площади застройки опорных металлоконструкций котла с повышением КПД при одновременном снижении металлоемкости котла и его гидравлического сопротивления - в полезной модели достигается тем, что в водогрейном водотрубном котле, содержащем топочную камеру и расположенную над ней конвективную шахту с установленными в верхней её части с сечением, меньшим сечения топочной камеры , поверхностями нагрева, при этом топочная камера и конвективная шахта выполнены из газоплотных сварных экранов с коллекторами и трубопроводами для подключения либо по четырехходовой, либо по двухходовой схеме циркуляции воды, согласно полезной модели, нижняя часть конвективной шахты выполнена с площадью нормального сечения, равной площади нормального сечения топочной камеры и снабжена мембранным нагревателем из продольнооребренных труб, которые соединены по воде непосредственно с трубами двух противоположно расположенных экранов нижней части конвективной шахты, являющихся продолжением труб экранов топочной камеры, суммарное внутреннее сечение труб для прохода воды мембранного нагревателя составляет 0,6-1,8 от суммарного внутреннего сечения для прохода воды в соединенных с ним трубах двух экранов конвективной шахты, при этом с любой схемой циркуляции воды: либо четырехходовой, либо двухходовой, либо одноходовой по отношению к направлению движения дымовых газов все конвективные поверхности нагрева с поперечным оребрением включены по схеме противотока с опускным движением воды, а мембранный нагреватель в нижней части конвективной шахты - либо по схеме противотока, либо по схеме прямотока. Возможно, согласно полезной модели, что как минимум два противоположных газоплотных сварных экрана конвективной шахты выше уровня расположения мембранного нагревателя выполнены с изгибами в направлении к центральной оси котла с переходом в верхнюю часть с меньшей площадью нормального сечения, при этом соотношение площадей нормальных сечений верхней и нижней частей конвективной шахты составляет 0,35-0,49. Кроме того, возможно, что по углам топочной камеры и нижней части конвективной шахты установлены одна или две трубы с наружным диаметром, составляющим 1,05-1,2 наружного диаметра остальных труб экранов топочной камеры и нижней части конвективной шахты.

Полезная модель относится к теплоэнергетике, в частности к конструкциям водогрейных аппаратов и может быть использована в системах отопления и горячего водоснабжения. Наиболее близким к заявляемой полезной модели является водогрейный водотрубный котел, содержащий топочную камеру и расположенную над ней конвективную шахту с установленными в верхней её части с сечением, меньшим сечения топочной камеры,, поверхностями нагрева, при этом топочная камера и конвективная шахта выполнены из газоплотных сварных экранов с коллекторами и трубопроводами для подключения либо по четырехходовой, либо по двухходовой схеме циркуляции воды (Патент РФ на полезную модель №37803, "Водогрейный водотрубный котёл", кл. F 22 B 21/00, F 24 H 1/00. приоритет 31.12.2003 г.).

Недостатком известного котла является недостаточно высокая тепловая эффективность при сжигании таких топлив, как природный газ, дизелин и мазут. В этом котле, как и в других известных базовых моделях, имеются ограничения по дальнейшему снижению металлоёмкости котла и повышению его коэффициента полезного действия (далее - КПД). Дальнейшее уменьшение сечения конвективного газохода до величин менее 0,5 от сечения топки с целью более эффективного использования конвективных поверхностей нагрева, направленного на снижение металлоёмкости котла, ограничено возможным возникновением вибраций из-за чрезмерного повышения скоростей газов в первом ширмовом нагревателе. Повышение КПД ограничивается также низким температурным напором, т.е. разницей температур между относительно "холодными" уходящими газами и относительно "горячей" водой, протекающей в последнем по ходу газов ширмовом нагревателе. Это связано с тем, что ширмовые поверхности нагрева конвективной шахты включены по схеме с подъёмным движением воды, т.е. все наиболее эффективно работающие поверхности нагрева включены по схеме прямотока по отношению к направлению движения дымовых газов. Максимальный КПД в котле такого типа не превышает 93,5%.

Кроме того, ни одно из известных ранее технических решений, включая и ближайший прототип, не предусматривало конструктивной возможности запитки водой ширмовых или конвективных поверхностей нагрева непосредственно из труб топочных экранов или из труб экранов конвективной шахты, являющихся продолжением труб топочных экранов. Для того чтобы запитать водой ширмовые или конвективные поверхности между топочными экранами и экранами конвективной шахты всегда устанавливались промежуточные коллекторы. К этим промежуточным коллекторам подсоединялись стояки, как правило, большего диаметра, чем трубы топочных экранов, а уже из этих стояков запитывались водой трубы

ширмовых или конвективных поверхностей нагрева. Это ограничивало возможности компоновочно-конструктивного оформления габаритов и поверхностей нагрева конвективной шахты.

Технический результат предлагаемой полезной модели - повышение энергетической эффективности по отношению к ранее известному котлу при сохранении площади застройки опорных металлоконструкций котла с повышением КПД при одновременном снижении металлоемкости котла и его гидравлического сопротивления.

Технический результат в полезной модели достигается тем, что в водогрейном водотрубном котле, содержащем топочную камеру и расположенную над ней конвективную шахту с установленными в верхней её части с сечением» меньшим сечения топочной камеры , поверхностями нагрева, при этом топочная камера и конвективная шахта выполнены из газоплотных сварных экранов с коллекторами и трубопроводами для подключения либо по четырехходовой, либо по двухходовой схеме циркуляции воды, согласно полезной модели, нижняя часть конвективной шахты выполнена с площадью нормального сечения, равной площади нормального сечения топочной камеры и снабжена мембранным нагревателем из продольнооребренных труб, которые соединены по воде непосредственно с трубами двух противоположно расположенных экранов нижней части конвективной шахты, являющихся продолжением труб экранов топочной камеры, суммарное внутреннее сечение труб для прохода воды мембранного нагревателя составляет 0,6-1,8 от суммарного внутреннего сечения для прохода воды в соединенных с ним трубах двух экранов конвективной шахты, при этом с любой схемой циркуляции воды: либо четырехходовой, либо двухходовой, либо одноходовой по отношению к направлению движения дымовых газов все конвективные поверхности нагрева с поперечным оребрением включены по схеме противотока с опускным движением воды, а мембранный нагреватель в нижней части конвективной шахты - либо по схеме противотока, либо по схеме прямотока. Возможно, согласно полезной модели, что как минимум два противоположных газоплотных сварных экрана конвективной шахты выше уровня расположения мембранного нагревателя выполнены с изгибами в направлении к центральной оси котла с переходом в верхнюю часть с меньшей площадью нормального сечения, при этом соотношение площадей нормальных сечений верхней и нижней частей конвективной шахты составляет 0,35-0,49. Кроме того, возможно, что по углам топочной камеры и нижней части конвективной шахты установлены одна или две трубы с наружным диаметром, составляющим 1,05-1,2 наружного диаметра остальных труб экранов топочной камеры и нижней части конвективной шахты.

На фиг.1 изображен поперечный разрез заявленного котла, на фиг.2 - продольный разрез заявленного котла, на фиг.3 - сечение А-А мембранного нагревателя, на фиг.4 - соединение труб мембранного нагревателя с трубами экрана нижней части конвективной шахты, на фиг.5 - четырёхходовая схема

движения воды, на фиг.6 - двухходовая схема движения воды, на фиг.7 - одноходовая схема движения воды.

Водогрейный водотрубный котел (фиг.1-фиг.2) содержит топочную камеру 1 и расположенную над ней конвективную шахту с установленными в верхней её части 2 с сечением, меньшим сечения топочной камеры 1, поверхностями нагрева 3, при этом топочная камера 1 и конвективная шахта выполнены из газоплотных сварных экранов 4, 5 с коллекторами 6, 7 и трубопроводами 8 для подключения либо по четырехходовой (фиг.5), либо по двухходовой (фиг.6) схеме циркуляции воды, согласно полезной модели, нижняя часть 9 конвективной шахты выполнена с площадью нормального сечения, равной площади нормального сечения топочной камеры 1 и снабжена мембранным нагревателем 10 (фиг.3) из продольнооребренных труб, которые соединены по воде непосредственно с трубами двух противоположно расположенных экранов 5 нижней части 9 конвективной шахты, являющихся продолжением труб экранов 4 топочной камеры 1 , суммарное внутреннее сечение труб для прохода воды мембранного нагревателя 10 составляет 0,6-1,8 от суммарного внутреннего сечения для прохода воды в соединенных с ним трубах двух экранов 5 конвективной шахты, при этом с любой схемой циркуляции воды: либо четырехходовой (фиг.3), либо двухходовой (фиг.6), либо одноходовой (фиг.7) по отношению к направлению движения дымовых газов 11 все конвективные поверхности нагрева 3 с поперечным оребрением включены по схеме противотока с опускным движением воды, а мембранный нагреватель 10 в нижней части 9 конвективной шахты - либо по схеме противотока, либо по схеме прямотока. Возможно, согласно полезной модели, что как минимум два противоположных газоплотных сварных экрана 5 конвективной шахты выше уровня расположения мембранного нагревателя 10 выполнены с изгибами 12 в направлении к центральной оси (на чертежах не показано) котла с переходом в верхнюю часть 2 с меньшей площадью нормального сечения, при этом соотношение площадей нормальных сечений верхней 2 и нижней 9 частей конвективной шахты составляет 0,35-0,49. Кроме того, возможно, что по углам топочной камеры 1 и нижней части 9 конвективной шахты установлены одна или две трубы 13 с наружным диаметром, составляющим 1,05-1,2 наружного диаметра остальных труб экранов 4, 5 топочной камеры 1 и нижней части 9 конвективной шахты. При четырёхходовой схеме движения воды устанавливается один промежуточный коллектор 14 между экранами 5 конвективной шахты на входе в верхнюю часть 2 конвективной шахты, а при двухходовой схеме движения воды устанавливаются два промежуточных коллектора 14 между экранами 5 конвективной шахты на входе в верхнюю часть 2 конвективной шахты, по одному на каждую сторону. Суммарное внутреннее сечение труб для прохода воды мембранного нагревателя 10 в пределах 0,6-1,8 от суммарного внутреннего сечения для прохода воды в соединенных с ним трубах двух экранов 5 конвективной шахты обеспечивает оптимальный режим работы мембранного нагревателя 10. Соотношение площадей нормальных сечений

верхней 2 и нижней 9 частей конвективной шахты в пределах 0,35-0,49 также является оптимальным для данного котла. Для обеспечения требуемой прочности оболочки цельносварной коробки при возможных хлопках в котле топочная камера 1 оснащается необходимым количеством поясов 15 жесткости, замкнутых по периметру и выполненных из профилированного проката.

Работа котла. Основным топливом, как правило, является природный газ, дизельное топливо или мазут, которые сжигаются в газомазутных горелках (на чертеже не показаны), размещённых встречно на противоположных экранах топочной камеры 1. Котёл может работать в двух режимах - основном и пиковом.

Движение воды в котле в основном режиме работы при четырёхходовой схеме (фиг.5) осуществляется по схеме: подвод холодной воды в нижние коллекторы 7 , экраны 4, 5 котла, не соединенные с трубами мембранного нагревателя 10, верхние коллекторы 6, один из экранов 5 конвективной шахты, соединенный с поверхностью нагрева 3, промежуточный коллектор 14, экран 5 нижней части 9 конвективной шахты, соединенный с трубами мембранного нагревателя 10, экран 4, нижние коллекторы 7, экран 4 топочной камеры противоположной стороны котла, экран 5 нижней части 9 конвективной шахты, соединенный с мембранным нагревателем 10, верхние коллекторы 6, экраны 5, 4 не соединенные с мембранным нагревателем 10, нижний коллектор 7. При этом все конвективные поверхности нагрева 3 включены по схеме противотока к направлению движения дымовых газов 11, а половина труб мембранного нагревателя 10 включена по схеме противотока и вторая половина - по схеме прямотока. В пиковом режиме движение воды организуется по двухходовой схеме.

Движение воды в котле в основном режиме работы при двухходовой схеме: холодная вода через нижние коллекторы 7 поступает в два экрана 4 и два экрана 5, не соединенных с трубами мембранного нагревателя 10, верхние коллекторы 6 , затем в два экрана 5, соединенных с конвективными поверхностями нагрева 3, промежуточные коллекторы 14, экраны 5, соединенные с трубами мембранного нагревателя 10, экраны 4 топочной камеры 1, нижние коллекторы 7. При этом все конвективные поверхности нагрева 3 и мембранный нагреватель 10 включены по схеме противотока по отношению к направлению движения дымовых газов 11. В пиковом режиме движение воды организуется по одноходовой схеме.

При одноходовой схеме циркуляции воды в котле (фиг.7) вода направляется в верхние коллекторы 6, затем опускается четырьмя параллельными потоками по всем экранам 5 конвективной шахты, как соединенным, так и не соединенным с мембранным нагревателем 10, затем по экранам 4 топочной камеры 1 опускается в нижние коллекторы 7 и поступает к потребителю. И в этом случае все конвективные поверхности нагрева 3 и мембранный нагреватель 10 включены по схеме противотока по отношению к направлению движения дымовых газов 11.

Таким образом, в предложенном котле все конвективные поверхности нагрева, оснащенные наиболее эффективным по теплообмену поперечным оребрением, и, по крайней мере, половина поверхностей мембранного нагревателя, во всех режимах котла, включены по наиболее эффективной теплотехнической схеме подогрева воды - по схеме противотока, позволяющей получить наибольшие температурные напоры, что вместе с применением повышенных скоростей газов за счет сужения верхней части конвективной шахты, обеспечивает получение более высокого КПД котла - свыше 95%, при его меньшей металлоемкости и меньшем гидравлическом сопротивлении за счет уменьшения общей длины труб конвективных поверхностей нагрева.

Источник информации: Патент РФ на полезную модель №37803, "Водогрейный водотрубный котёл", кл. F 22 B 21/00, F 24 H 1/00. приоритет 31.12.2003 г.

1. Водогрейный водотрубный котел, содержащий топочную камеру и расположенную над ней конвективную шахту с установленными в верхней её части с сечением, меньшим сечения топочной камеры, поверхностями нагрева, при этом топочная камера и конвективная шахта выполнены из газоплотных сварных экранов с коллекторами и трубопроводами для подключения либо по четырехходовой, либо по двухходовой схеме циркуляции воды, отличающийся тем, что нижняя часть конвективной шахты выполнена с площадью нормального сечения, равной площади нормального сечения топочной камеры и снабжена мембранным нагревателем из продольнооребренных труб, которые соединены по воде с трубами двух противоположно расположенных экранов нижней части конвективной шахты, являющихся продолжением труб экранов топочной камеры, суммарное внутреннее сечение труб для прохода воды мембранного нагревателя составляет 0,6-1,8 от суммарного внутреннего сечения для прохода воды в соединенных с ними трубах двух экранов конвективной шахты, при этом с любой схемой циркуляции воды: либо четырехходовой, либо двухходовой, либо одноходовой по отношению к направлению движения дымовых газов все конвективные поверхности нагрева с поперечным оребрением включены по схеме противотока с опускным движением воды, а мембранный нагреватель в нижней части конвективной шахты - по схеме прямотока.

2. Водогрейный водотрубный котел по п. 1, отличающийся тем, что по углам топочной камеры и нижней части конвективной шахты установлены не более двух труб с наружным диаметром каждой, составляющим 1,05-1,2 наружного диаметра остальных труб экранов топочной камеры и нижней части конвективной шахты.



 

Похожие патенты:

Твердотопливный отопительный котел длительного горения относится к отопительной технике, а именно к теплообменным агрегатам, работающим на твердом топливе, которые могут быть использованы для отопления жилых и других помещений, а также для горячего водоснабжения. В качестве твердого топлива может быть использовано, например, уголь, опилки, торф, куски деревьев, смесь названных видов топлива и т.д.

Водогрейный котел пластинчатого типа (кв) на твердом топливе (дровах, щепе), газе или мазуте предназначен для нагрева воды, используемой в системах отопления и горячего водоснабжения на объектах промышленности и жилищно-коммунального хозяйства.

Энергосберегающий экономичный котел отопительный водогрейный стальной, промышленный или для отопления дома относится к теплоэнергетике, а именно к комбинированным универсальным котлам и может быть использован в системах водяного отопления жилых и производственных помещений и сооружений.

Электрические мини-котлы отопления относятся к теплотехнике, в частности к системам для отопления помещений различного назначения.

Водогрейный твердотопливный двухконтурный котел на дровах относится к теплоэнергетике, а именно к устройствам для обогрева, приготовления горячей воды или подачи тепла для технологических нужд в бытовые, производственные и другие помещения различного предназначения, в которых оборудована система центрального отопления.

Схема системы обогрева и отопления относится к области производства и использования систем отопления, основанных на утилизации температуры отходных газов обогревателей, в частности, нагревательных котлов типа АГВ, и может быть использована для отопления дополнительных объектов, не охваченных работой основной системой отопления, таких как гаражные помещения, бани, веранды, полы и пр.
Наверх