Высоковольтное цифровое устройство для измерения тока

 

Полезная модель относится к измерительной технике, в частности к цифровым измерительным устройствам постоянного и переменного токов. Высоковольтное цифровое устройство для измерения тока, содержащее питающий электромагнитный трансформатор и пояс Роговского, охватывающие токопровод с измеряемым током; цилиндрический шунт с внутренней полостью, включенный в рассечку токопровода, помещенные внутрь шунта преобразователь ток-напряжение, стабилизатор напряжения, блок обработки сигналов с аналого-цифровым преобразователем и первый оптический приемопередатчик; оптический канал; второй оптический приемопередатчик, маршрутизатор и блок питания, расположенные на низковольтной стороне; при этом питающий электромагнитный трансформатор подключен к преобразователю ток-напряжение, который подключен к стабилизатору напряжения, подключенному к блоку обработки сигналов и к первому оптическому приемопередатчику, потенциальные электроды шунта и пояс Роговского подключены к блоку обработки сигналов, который подключен к первому оптическому приемопередатчику через оптический канал соединенному со вторым оптическим приемопередатчиком, подключенным к маршрутизатору, блок питания подключен ко второму оптическому приемопередатчику и маршрутизатору, дополнительно содержит магнитотранзисторный преобразователь и измерительный электромагнитный трансформатор тока, охватывающие токопровод с измеряемым током и подключенные к блоку обработки сигналов. Технический результат: обеспечение возможности диагностики сигнала шунта, резервирование сигнала по постоянному току, повышение точности измерения тока.

Полезная модель относится к измерительной технике, в частности к цифровым измерительным устройствам постоянного и переменного токов.

Известен датчик тока (Патент на изобретение РФ 2377578, МПК G01R 19/00, 2008 г.), содержащий резистивный элемент, соединенный с усилителем, и блок питания, между резистивным элементом и выходом датчика установлена трансформаторная гальваническая развязка, включающая в себя аналого-цифровой преобразователь, разделяющий трансформатор и цифроаналоговый преобразователь, при этом выход усилителя соединен с аналого-цифровым преобразователем, выход аналого-цифрового преобразователя - с первичной обмоткой разделяющего трансформатора, вторичная обмотка которого соединена с цифроаналоговым преобразователем, а усилитель и аналого-цифровой преобразователь связаны с блоком питания через трансформатор питания.

Недостатками указанного датчика тока являются передача измерительного сигнала в цифровой форме через разделяющий трансформатор, отсутствие устройств экранирования электронной аппаратуры и как следствие ее чувствительность к электрическим и магнитным полям токопровода с измеряемым током.

Известно высоковольтное оптоэлектронное устройство для измерения тока (Патент на изобретение РФ 2346285, G01R 19/00, 2009 г), содержащее датчик тока, аналого-цифровой преобразователь и передатчик, оно помещено внутрь токопровода с измеряемым током, находится под потенциалом высокого напряжения в зоне отсутствия магнитных и электрических полей, а передача информации о величине измеряемого тока производится в кодированном цифровом виде по оптическому каналу.

Недостатком указанного высоковольтного оптоэлектронного устройства является то, что измерение осуществляется посредством определения напряжения на шунте, включенном параллельно основному токопроводу, изменение перераспределения токов между токопроводом и шунтом приводит к дополнительным погрешностям. Также указанное устройство не имеет блока питания электронной аппаратуры на высоковольтной стороне, что делает невозможным ее работу.

Известно высоковольтное цифровое устройство для измерения тока (Патент на полезную модель РФ 137955, G01R 19/00, 2014 г.), принятое за прототип, содержащее шунт, аналого-цифровой преобразователь, оптический приемопередатчик и оптический канал, питающий электромагнитный трансформатор и пояс Роговского, охватывающие токопровод с измеряемым током; преобразователь ток-напряжение, стабилизатор напряжения и блок обработки сигналов, помещенные внутрь шунта, выполненного цилиндрическим с внутренней полостью и включенного в рассечку токопровода; второй оптический приемопередатчик, маршрутизатор и блок питания, расположенные на низковольтной стороне; при этом оптический приемопередатчик помещен внутрь шунта, а блок обработки сигналов включает аналого-цифровой преобразователь; при чем питающий электромагнитный трансформатор подключен к преобразователю ток-напряжение, который соединен со стабилизатором напряжения, подключенным к блоку обработки сигналов и к первому оптическому приемопередатчику, потенциальные электроды шунта и пояс Роговского подключены к блоку обработки сигналов, который подключен к первому оптическому приемопередатчику через оптический капал соединенному со вторым оптическим приемопередатчиком, подключенным к маршрутизатору, а блок питания подключен ко второму оптическому приемопередатчику и к маршрутизатору.

Недостатком указанного устройства является отсутствие диагностики сигнала шунта, отсутствие резервирования сигнала по постоянному току, недостаточная точность измерения тока для систем коммерческого учета электроэнергии.

Технический результат заключается в обеспечении возможности диагностики сигнала шунта, резервировании сигнала по постоянному току, повышении точности измерения тока.

Технический результат достигается тем, что высоковольтное цифровое устройство для измерения тока, содержащее питающий электромагнитный трансформатор и пояс Роговского, охватывающие токопровод с измеряемым током; цилиндрический шунт с внутренней полостью, включенный в рассечку токопровода, помещенные внутрь шунта преобразователь ток-напряжение, стабилизатор напряжения, блок обработки сигналов с аналого-цифровым преобразователем и первый оптический приемопередатчик; оптический канал; второй оптический приемопередатчик, маршрутизатор и блок питания, расположенные на низковольтной стороне; при этом питающий электромагнитный трансформатор подключен к преобразователю ток-напряжение, который подключен к стабилизатору напряжения, подключенному к блоку обработки сигналов и к первому оптическому приемопередатчику, потенциальные электроды шунта и пояс Роговского подключены к блоку обработки сигналов, который подключен к первому оптическому приемопередатчику через оптический канал соединенному со вторым оптическим приемопередатчиком, подключенным к маршрутизатору, блок питания подключен ко второму оптическому приемопередатчику и маршрутизатору, дополнительно содержит магнитотранзисторный преобразователь и измерительный электромагнитный трансформатор тока, охватывающие токопровод с измеряемым током и подключенные к блоку обработки сигналов.

На фиг. 1 изображена принципиальная схема высоковольтного цифрового устройства для измерения тока.

На чертеже использованы следующие обозначения: токопровод 1, цилиндрический шунт 2, пояс Роговского 3, магнитотранзисторный преобразователь 4, измерительный электромагнитный трансформатор тока 5, питающий электромагнитный трансформатор 6, преобразователь ток-напряжение 7, стабилизатор напряжения 8, блок обработки сигналов 9, содержащий аналого-цифровый преобразователь (АЦП), первый оптический приемопередатчик 10, оптический канал 11, второй оптический приемопередатчик 12, маршрутизатор 13, блок питания 14, опорный изолятор 15.

Высоковольтное цифровое устройство для измерения тока, показанное на фиг. 1, содержит цилиндрический шунт 2, включенный в рассечку токопровода 1 (совмещенный с токопроводом). Пояс Роговского 3, магнитотранзисторный преобразователь 4, измерительный электромагнитный трансформатор тока 5 и питающий электромагнитный трансформатор 6 охватывают токопровод 1 с измеряемым током. Внутрь шунта 2 помещены: преобразователь ток-напряжение 7, стабилизатор напряжения 8, блок обработки сигналов 9 и первый оптический приемопередатчик 10. Оптический канал 11 помещен внутрь опорного изолятора 15, второй оптический приемопередатчик 12, маршрутизатор 13, блок питания 14 расположены на низковольтной стороне. Питающий электромагнитный трансформатор 6 соединен с преобразователем ток-напряжение 7, который подключен к стабилизатору напряжения 8. Стабилизатор напряжения 8 также подключен к блоку обработки сигналов 9, содержащему АЦП, и к первому оптическому приемопередатчику 10. Потенциальные электроды цилиндрического шунта 2, пояс Роговского 3, магнитотранзисторный преобразователь 4 и измерительный электромагнитный трансформатор тока 5 подключены к блоку обработки сигналов 9, который соединен с первым оптическим приемопередатчиком 10. Первый оптический приемопередатчик 10 с помощью оптического канала 11 соединен со вторым оптическим приемопередатчиком 12, который подключен к маршрутизатору 13. Блок питания 14 подключен ко второму оптическому приемопередатчику 12 и маршрутизатору 13. Преобразователь ток-напряжение 7, стабилизатор напряжения 8, блок обработки сигналов 9, первый оптический приемопередатчик 10 помещены внутрь шунта для исключения влияния на них электрических и магнитных полей. Оптический канал 11 помещен в опорный изолятор 15 для обеспечения высоковольтной гальванической развязки. Цилиндрический шунт 2, преобразует весь спектр частот, включая постоянный ток и апериодическую составляющую с высокой точностью. Пояс Роговского 3 позволяет измерять токи в рабочих и переходных режимах. Магнитотранзисторный преобразователь 4 предназначен для измерения токов в переходных и аварийных режимах работы с целью снабжения информацией релейной защиты и автоматики, работает в линейном диапазоне с токами короткого замыкания высокой кратности и осуществляет преобразование тока без искажения в широком спектре частот, включая постоянную и апериодическую составляющие. Измерительный электромагнитный трансформатор тока 5 имеет высокий класс точности (так как его магнитопровод выполнен из нанокристаллического сплава) и предназначен для автоматизированных информационно-измерительных систем коммерческого учета электроэнергии.

Высоковольтное цифровое устройство для измерения тока работает следующим образом. При протекании электрического тока но токопроводу 1 на цилиндрическом шунте 2 наблюдается падение напряжения, в поясе Роговского 3 наводится ЭДС, равная , на выходе магнитотранзисторного преобразователя 4 появляется напряжение и на выходе измерительного электромагнитного трансформатора тока 5 также появляется напряжение, поступающие на блок обработки сигналов 9, где они обрабатывается в соответствии с запрограммированными алгоритмами, в том числе преобразуются в цифровую форму. Наличие магнитотранзисторного преобразователя 4, позволяющего измерять не только переменный, но и постоянный ток, дает возможность проводить диагностику сигнала цилиндрического шунта 2 в блоке обработки сигналов 8 или на низковольтной стороне путем сравнения сигнала цилиндрического шунта 2 и магнитотранзисторного преобразователя 4. За счет того, что магнитотранзисторный преобразователь 4 может измерять постоянный ток выполняется резервирование сигнала по постоянному току. Использование магнитопровода, выполненного из нанокристаллической сплава, в измерительном электромагнитном трансформаторе тока 5 позволяет повысить точность измерений и достигнуть высокий класс точности достаточный для систем коммерческого учета электроэнергии. Информационный поток об измеренном токе с метками времени от блока обработки сигналов 9 поступает на оптический приемопередатчик 10, преобразующий его в оптический сигнал. Оптический сигнал через оптический канал 11 передается на низковольтную сторону, где с помощью второго оптического приемопередатчика 12 преобразуется обратно в информационный поток и передается маршрутизатору 13. Маршрутизатор 13 передает информацию об измеренном токе потребителям информации. Потребителями информации могут быть устройства релейной защиты и автоматики, устройства коммерческого учета электроэнергии и др. Электрический ток от питающего трансформатора 6, возникающий при протекании тока по токопроводу 1, поступает на преобразователь ток-напряжение 7, где осуществляется выпрямление, сглаживание, ограничение выходного напряжения. Полученное напряжение поступает на стабилизатор напряжения 8, выполняющего функцию нормирования выходного напряжения до заданного уровня и сглаживание. Питание блоку обработки сигналов 9 и первому оптическому приемопередатчику 10 подается от стабилизатора напряжения 8. Питание второму оптическому приемопередатчику 12 и маршрутизатору 13 подается от блока питания 14.

Таким образом, применение четырех первичных преобразователей (шунт, пояс Роговского, магнитотранзисторный преобразователь и измерительный электромагнитный трансформатор тока) в заявленном техническом решении обеспечивает возможность диагностики сигнала шунта, резервирование сигнала по постоянному току, повышение точности измерения тока.

Высоковольтное цифровое устройство для измерения тока, содержащее питающий электромагнитный трансформатор и пояс Роговского, охватывающие токопровод с измеряемым током; цилиндрический шунт с внутренней полостью, включенный в рассечку токопровода; помещенные внутрь шунта преобразователь ток-напряжение, стабилизатор напряжения, блок обработки сигналов с аналого-цифровым преобразователем и первый оптический приемопередатчик; оптический канал; второй оптический приемопередатчик, маршрутизатор и блок питания, расположенные на низковольтной стороне; при этом питающий электромагнитный трансформатор подключен к преобразователю ток-напряжение, который подключен к стабилизатору напряжения, подключенному к блоку обработки сигналов и к первому оптическому приемопередатчику, потенциальные электроды шунта и пояс Роговского подключены к блоку обработки сигналов, который подключен к первому оптическому приемопередатчику через оптический канал, соединенному со вторым оптическим приемопередатчиком, подключенным к маршрутизатору, блок питания подключен ко второму оптическому приемопередатчику и маршрутизатору, отличающееся тем, что дополнительно содержит магнитотранзисторный преобразователь и измерительный электромагнитный трансформатор тока, охватывающие токопровод с измеряемым током и подключенные к блоку обработки сигналов.



 

Наверх