Зигзагообразный стержень с жесткой вертикальной заделкой

 

Полезная модель относится к лабораторному оборудованию и может быть применена в учебных лабораториях по теоретической механике технических вузов, техникумов и технических училищ. Известный стержень состоит из участков неизменяемых размеров. Это мешает организовать учебно-исследовательскую работу студентам по выявлению зависимостей величин реакций связей от размеров участков стержней. У предложенного стержня все его участки выполнены телескопическими, наружные стержни каждого телескопического соединения выполнены с клеммами на концах, направленными на горизонтальном участке стержня влево, на вертикальных - вверх. Это позволило организовать учебно-исследовательскую работу студентам по выявлению зависимостей величин реакций связей от размеров участков исследуемого стержня. Илл. 1.

Полезная модель относится к лабораторному оборудованию и может быть применена в учебных лабораториях по теоретической механике технических вузов, техникумов и технических училищ.

Известен стержень с приложенными к нему внешними силами и моментами и соответствующими размерами l1, l 2 (Сборник заданий для курсовых работ по теоретической механике: Учебное пособие для технических вузов. - 7-е изд., исправленное. - М.: Интеграл-Пресс, 2001, стр. 11, рис. 3, вар. 23а), состоящий из верхнего вертикального участка, верхний конец которого жестко заделан в горизонтальную станину, а его нижний конец жестко связан с горизонтальным участком, левый конец которого жестко связан с другим вертикальным участком, направленным вниз.

Основной недостаток известного стержня заключается в том, что он имеет постоянные размеры (застывшую форму), т.е. постоянные линейные параметры участков, что не позволяет студентам (обучающимся) проводить учебные исследования как теоретические, так и экспериментальные по выявлению зависимости величин реакций связей от линейных размеров его участков.

Задача, на решение которой направлена полезная модель, заключается в том, чтобы у стержня можно было изменять размеры его участков и обеспечить обучающимся проведение учебных исследований по выявлению зависимости величин реакций связей от линейных размеров его участков.

Технический результат достигается тем, что зигзагообразный стержень с жесткой вертикальной заделкой, состоящий из верхнего вертикального участка, верхний конец которого жестко заделан в горизонтальную станину, а его нижний конец жестко связан с горизонтальным участком, левый конец которого жестко связан с другим вертикальным участком, направленным вниз, согласно нашему предложению, все участки стержня выполнены телескопическими, наружные стержни каждого телескопического соединения выполнены с клеммами на концах, направленными на горизонтальном участке стержня влево, на вертикальных - вверх.

Такое исполнение стержня позволило изменять размеры участков стержня и проводить учебные исследования обучающимся по выявлению зависимости величин реакций связей (опор) от размеров его участков.

На фиг. представлена схема предложенного стержня.

Зигзагообразный стержень с жесткой вертикальной заделкой состоит из верхнего вертикального участка AB, верхний конец A которого жестко заделан в горизонтальную станину. Его нижний конец B жестко связан с горизонтальным участком BC, левый конец C которого жестко связан с другим вертикальным участком CE, направленным вниз. Все участки стержня выполнены телескопическими. Наружные стержни каждого телескопического соединения выполнены с клеммами на концах, направленными на горизонтальном участке стержня влево, на вертикальных - вверх. Например, горизонтальный участок ВС стержня имеет наружный стержень 1 и клемму 2, направленную влево.

Стержень работает следующим образом.

У прототипа участки AB, BC и CE стержня неизменяемых размеров. У предложенного стержня ABCE участки выполнены телескопическими с клеммами на концах. Это позволяет изменять длины участков стержней и закреплять их размеры с помощью клемм. Можно изменять длину любого участка стержня или всех сразу и определять реакции его опоры. Изменяя длины участков стержней ступенчато и определяя каждый раз реакции опор, можно получать зависимости реакций опор от размеров стержней. К конструкции приложена плоская произвольная система сил. При решении задачи используют, например, первую форму условий равновесия такой системы сил. Она заключается в следующем: для равновесия плоской произвольной системы сил необходимо и достаточно, чтобы алгебраическая сумма проекций действующих сил на каждую из координатных осей и алгебраическая сумма моментов относительно любого центра, лежащего в той же плоскости, должны быть равны нулю (Fkx=0, Fky=0, ).

Общая методика решения подобных задач приведена в пособии, представленном выше (стр. 8-14). Конструкция позволяет при наличии соответствующих датчиков определять реакции опор и экспериментально и сравнивать результаты теоретических и экспериментальных исследований.

Решение задач с изменяемыми размерами участков стержней внедрено в учебный процесс студентов первого курса Казанского государственного энергетического университета. Студенты уже с первого курса начинают выполнять учебно-исследовательскую работу. Это, несомненно, повышает качество обучения студентов.

Таким образом, задача, поставленная перед полезной моделью, полностью выполнена.

Зигзагообразный стержень с жесткой вертикальной заделкой, состоящий из верхнего вертикального участка, верхний конец которого жестко заделан в горизонтальную станину, а его нижний конец жестко связан с горизонтальным участком, левый конец которого жестко связан с другим вертикальным участком, направленным вниз, отличающийся тем, что все участки стержня выполнены телескопическими, наружные стержни каждого телескопического соединения выполнены с клеммами на концах, направленными на горизонтальном участке стержня влево, на вертикальных - вверх.

РИСУНКИ



 

Похожие патенты:

Модель-схема аксонометрических плоскостей системы отопления относится к наглядным пособиям - моделям и может быть использована для демонстрации аксонометрических и основных плоскостей проекций и контроля построения наглядных изображений в курсах начертательной геометрии и черчения. Модель является также и шаблоном, по которому можно достаточно точно ориентировать объекты в реальном пространстве и в компьютерной графике. Название полезной модели - «модель-шаблон аксонометрических плоскостей».

Данная полезная модель учебного стенда для изучения частотного преобразователя, отличается от известных, рядом технических усовершенствований, одно из которых - диэлектрическое основание, на котором смонтирован частотный преобразователь.

Модель корня зуба относится к области медицины, а именно к стоматологии и может быть использована для обучения студентов и врачей-стоматологов лечению и удалению корней зубов.

Стенд демонстрационный настенный для презентации электромагнитной индукции относится к средствам обучения учащихся в учебных заведениях различного уровня, а именно к техническим средствам, предназначенным для демонстрации электромагнитной индукции при изучении физики

Стенд демонстрационный настенный для презентации электромагнитной индукции относится к средствам обучения учащихся в учебных заведениях различного уровня, а именно к техническим средствам, предназначенным для демонстрации электромагнитной индукции при изучении физики

Модель корня зуба относится к области медицины, а именно к стоматологии и может быть использована для обучения студентов и врачей-стоматологов лечению и удалению корней зубов.

Данная полезная модель учебного стенда для изучения частотного преобразователя, отличается от известных, рядом технических усовершенствований, одно из которых - диэлектрическое основание, на котором смонтирован частотный преобразователь.

Модель-схема аксонометрических плоскостей системы отопления относится к наглядным пособиям - моделям и может быть использована для демонстрации аксонометрических и основных плоскостей проекций и контроля построения наглядных изображений в курсах начертательной геометрии и черчения. Модель является также и шаблоном, по которому можно достаточно точно ориентировать объекты в реальном пространстве и в компьютерной графике. Название полезной модели - «модель-шаблон аксонометрических плоскостей».
Наверх