Внутрискважинный компенсатор реактивной мощности

 

Полезная модель относится к области электротехники, а именно может быть использована для компенсаций реактивной мощности внутри скважины с применением погружных насосов с вентильными или асинхронными погружными электродвигателями. Сущность полезной модели: внутрискважинный компенсатор реактивной мощности цилиндрический корпус, выполненный с возможностью соединения с электродвигателем. Для возможности подачи напряжения электродвигатель из корпуса выходят питающие кабели. Внутри корпуса установлены косинусные конденсаторы, которые служат источником реактивной мощности. Для возможности регулирования вырабатываемой реактивной мощности внутри корпуса установлен блок системы управления.

Полезная модель относится к области электротехники и внутрискважинного оборудования, а именно может быть использована для компенсаций реактивной мощности внутри скважины с применением погружных насосов с вентильными или асинхронными погружными электродвигателями.

Существующие на данный момент решения для компенсации реактивной мощности представлены только в виде наземного оборудования, устанавливаемого на трансформаторных подстанциях или на станциях управления скважин. Такое решение не позволяет компенсировать реактивную мощность в питающих кабелях насосных установок. Учитывая, что длина кабелей может достигать 3000 м, это приводит к повышению требований к сечению кабелей и к повышенным потерям активной мощности в них (до 5%). Таким образом необходимы погружные компенсаторы реактивной мощности, которые позволят снизить общие затраты на эксплуатацию скважин (электроэнергия и расходные материалы) на величину порядка 5%.

Известен погружной электродвигатель с повышенным коэффициентом мощности [RU 2485660 C2 МПК H02K 5/12, опубликованная 20.06.2013], содержащий корпус с размещенными в нем статором, ротором, узлом токоввода, системой гидрозащиты, который дополнительно содержит жестко присоединенный к нему посредством внутренней резьбы модуль, включающий в себя низковольтный косинусный конденсатор, закрепленный внутри модуля резиновой манжетой, при этом конденсатор гидравлически сообщается с погружным электродвигателем при помощи сквозных отверстий, выполненных в верхнем и нижнем основаниях корпуса конденсатора.

Недостатком данного изобретения является невозможность регулирования вырабатываемой реактивной мощности.

Задачей полезной модели является создание внутрискважинного компенсатора реактивной мощности, при осуществлении которой достигается технический результат, заключающийся в возможности регулирования вырабатываемой реактивной мощности, тем самым происходит поддержание величины cos (коэффициента мощности) на заданном оптимальном уровне 0,9-0,95 путем выдачи команд на косинусные конденсаторы.

Указанный технический результат достигается тем, что внутрискважинный компенсатор реактивной мощности, содержащий корпус, с расположенными в нем косинусными конденсаторами, при этом указанный корпус выполнен с возможностью соединения с электродвигателем, компенсатор дополнительно содержит, установленный в корпусе блок системы управления и шинопроводы, причем входы косинусных конденсаторов соединены с выходами силовых модулей блока системы управления, а выходы косинусных конденсаторов соединены с шинопроводами.

На фиг. 1 - изображен погружной компенсатор реактивной мощности соединенный с погружным электродвигателем.

На фиг. 2 - изображен погружной компенсатор реактивной мощности, разрез по А-А.

На фиг. 3 - схематично изображен блок системы управления внутрискважинным компенсатором реактивной мощности.

Внутрискважинный компенсатор 1 реактивной мощности содержит герметичный цилиндрический корпус 2, выполненный из прочного материала, например сталь. Корпус 1 жестко присоединен к погружному электродвигателю 3 (фиг. 1), например, при помощи муфты. Питание электрическим током погружного электродвигателя 3 и внутрискважинного компенсатора 1 происходит по питающим кабелям, которые выходят из корпуса 2. Внутри корпуса 2 установлены косинусные конденсаторы 4 (фиг. 2), количество которых зависит от технических параметров компенсирующего устройства, например вырабатываемой реактивной мощности. Для возможности регулирования вырабатываемой реактивной мощности внутри корпуса 2 установлен блок 5 системы управления (фиг. 2), который коммутирует необходимое число косинусных конденсаторов 4 для поддержания оптимального cos. Для возможности электрических соединений внутри корпуса 2 установлены шинопроводы 6 (фиг. 2). Блок 5 системы управления состоит из трехфазного делителя напряжения 7, датчиков напряжение 8, однофазных трансформаторов тока 9, датчиков реактивного тока 10, элементов сравнения 11, инверторов 12, блоков формирования сигнала управления 13, дифференциальных усилителей 14, силовых модулей 15 (фиг. 3).

Внутрискважинный компенсатор 1 реактивной мощности работает следующим образом.

Внутрискважинный компенсатор 1 реактивной мощности соединяется с электродвигателем 3, например, при помощи муфты. При погружении электродвигателя 3 в забой скважины и включении его в работу происходит потребление электрической мощности, которая складывается из активной и реактивной. Так как в качестве погружных электродвигателей применяются вентильные или асинхронные электродвигатели, происходит потребление реактивной мощности, что ведет к увеличению тока и потерям активной мощности в кабеле.

Система управления синхронным компенсатором работает следующим образом. К трехфазной сети подключены делители 7, необходимые для согласования низковольтных цепей датчиков напряжения 8, которые выдают напряжения, пропорциональные напряжениям в фазе питающей сети. Эти напряжения поступают на датчики напряжения 8. Однофазные трансформаторы тока 9 формируют синхронизированные с сетью сигналы, которые поступают на датчики реактивного тока 10. Сигналы с датчиков реактивного тока и датчиков напряжения поступают на элемент сравнения 11, на котором происходит сравнение сигнала сети и отличие его от идеализированного. Сформированные сигналы поступают на входы инверторов 12 и в блоки формирования сигналов управления 13. Корректирующие сигналы с блоков формирования сигналов управления поступают на дифференциальные усилители 14, в которых формируются сигналы управления, пропорциональные коэффициенту усиления. Усиленные сигналы поступают на входы силовых модулей 15, выходы которых подключены к входам косинусных конденсаторов 4. С выходов косинусных конденсаторов 4 корректирующий сигнал подается в цепь фазы питающей сети, что ведет к компенсации реактивной мощности. Таким образом, обеспечивается возможность поддержание величины cos (коэффициента мощности) на заданном оптимальном уровне 0,9-0,95 путем выдачи команд на косинусные конденсаторы.

Внутрискважинный компенсатор реактивной мощности, содержащий корпус, с расположенными в нем косинусными конденсаторами, при этом указанный корпус выполнен с возможностью соединения с электродвигателем, отличающийся тем, что компенсатор дополнительно содержит установленный в корпусе блок системы управления и шинопроводы, причем входы косинусных конденсаторов соединены с выходами силовых модулей блока системы управления, а выходы косинусных конденсаторов соединены с шинопроводами.



 

Похожие патенты:

Активный фильтр относится к области электротехники и может использоваться в системах электропитания и распределения электрической энергии для компенсации искажений тока, создаваемых нелинейными нагрузками с бестрансформаторным входом на основе однофазного мостового выпрямителя с емкостным фильтром.

Схема демпфированного сетевого помехоподавляющего фильтра (фп) со стабилизатором напряжения для компьютера, стиральной машины и другой бытовой техники относится к области электротехники, в частности к устройствам, позволяющим уменьшать импульсные помехи в однофазной или трехфазной электрической сети. Техническим результатом является повышение качества электроснабжения, снижение потерь электроэнергии в электрических сетях за счет подавления импульсных помех в сети, а также упрощение настройки резонанса на частоте 50 Гц.

Устройство принадлежит к классу электротехнического оборудования, применяется для дистанционного управления и предохранения асинхронных двигателей трехфазного тока от коммутационных напряжений при неполнофазном режиме работы питающей сети. Устройство может работать как с проектируемыми, так и с действующими электрическими установками.

Устройство принадлежит к классу электроустановочного оборудования, применяется в печах индуктивности. В отличие от индуктивных аналогов, компенсирующих емкостную составляющую мощности и работающих в линиях электропередачи высокой протяженности, компенсаторы конденсаторного типа используются с целью уменьшения полной мощности за счет компенсации реактивной составляющей индуктивной мощности.

Устройство принадлежит к классу электроустановочного оборудования, применяется в печах индуктивности. В отличие от индуктивных аналогов, компенсирующих емкостную составляющую мощности и работающих в линиях электропередачи высокой протяженности, компенсаторы конденсаторного типа используются с целью уменьшения полной мощности за счет компенсации реактивной составляющей индуктивной мощности.

Устройство принадлежит к классу электротехнического оборудования, применяется для дистанционного управления и предохранения асинхронных двигателей трехфазного тока от коммутационных напряжений при неполнофазном режиме работы питающей сети. Устройство может работать как с проектируемыми, так и с действующими электрическими установками.

Схема демпфированного сетевого помехоподавляющего фильтра (фп) со стабилизатором напряжения для компьютера, стиральной машины и другой бытовой техники относится к области электротехники, в частности к устройствам, позволяющим уменьшать импульсные помехи в однофазной или трехфазной электрической сети. Техническим результатом является повышение качества электроснабжения, снижение потерь электроэнергии в электрических сетях за счет подавления импульсных помех в сети, а также упрощение настройки резонанса на частоте 50 Гц.

Активный фильтр относится к области электротехники и может использоваться в системах электропитания и распределения электрической энергии для компенсации искажений тока, создаваемых нелинейными нагрузками с бестрансформаторным входом на основе однофазного мостового выпрямителя с емкостным фильтром.

Изобретение относится к электротехнике и может быть использовано как в трехфазных, так и в однофазных электрических сетях
Наверх