Устройство для оценки активности вируса в клеточной системе

 

Полезная модель относится к медицине, ветеринарии и биотехнологии, а точнее к вирусологии, и может быть использована для прижизненного изучения и визуализации изменений метаболической активности культивированных клеток неразрушающими методами. Устройство для оценки активности вируса в клеточной системе состоит из лазерного модуля, размещенного вертикально и формирующего поток когерентного излучения, последовательно проходящего через матовый рассеиватель излучения и кювету с питательным раствором и подложкой с монослоем исследуемых клеток, установленных под лазерным блоком по его вертикальной оси, объектива микроскопа, формирующего изображение клеток в кювете, матрицу фотоприемников телекамеры, компьютера, снабженного программным обеспечением, обрабатывающим полученную информацию о метаболической активности клеток и формирующий картину спеклов, причем кювета установлена на светопроницаемой горизонтальной поверхности, снабжена крышкой, которая выполнена с утолщенной нижней частью, кювета и ее крышка выполнены из светопрозрачного материала, а матовый рассеиватель жестко закреплен между лазерным модулем и крышкой кюветы. Технический результат - расширение арсенала средств, позволяющих эффективно фиксировать изменения активности вируса в клеточной системе. 1 н.п. ф-лы, 3 з.п. ф-лы, 1 рисунок.

Полезная модель относится к медицине, ветеринарии и биотехнологии, а точнее к вирусологии, и может быть использована для прижизненного изучения и визуализации изменений метаболической активности культивированных клеток неразрушающими методами.

Широко известны способы и устройства для определения параметра, характеризующего метаболическую активность культивированных клеток, основанные на явлении люминесценции, где клеточный метаболизм анализируется с помощью люминесцирующего красителя. Известен также метод оценки активности клеток, где клеточный метаболизм анализируется с помощью квантовых точек.

Известно устройство для ультразвуковой активации вирусов комплекса клещевого энцефалита, включающее источник ультразвукового излучения, облучаемую вируссодержащую среду, помещенную в пробирки для УЗ-облучения, элементы крепления и размещения облучаемых пробирок и аппаратуру контроля и управления процессом ультразвуковой активации, для фиксации пробирок с вируссодержащей суспензией в ультразвуковой ванне устройство дополнительно содержит держатель пробирок, выполненный из ультразвукопроницаемого материала, установленный в сетчатой корзине, размещенной в ультразвуковой ванне, причем держатель выполнен с возможностью установки пробирок так, чтобы уровень промежуточной среды был выше уровня обрабатываемой суспензии в пробирках. В качестве пробирок для вируссодержащей среды используют нитроцеллюлозные пробирки объемом 3-5 мл с толщиной стенок 0,2-0,3 мм, а в качестве источника ультразвукового излучения используют ультразвуковую ванну типа УЗВ - 1/100-ТН-44 с сетчатой корзиной (патент на полезную модель RU 115921, 2012).

Несмотря на достоинства каждого из вышеописанных устройств и реализуемых с их помощью методов, общим недостатком является недостаточная эффективность определения активности вируса в клеточных системах.

Наиболее близким к предлагаемому является устройство, основанное на определении параметра, характеризующего метаболическую активность культивированных клеток с использованием лазерного излучения, содержащее размещенный по горизонтали источник когерентного излучения, в качестве которого используют лазерный модуль, испускающий пучок излучения, последовательно проходящий через матовое стекло, кювету с питательным раствором и стеклянную подложку с монослоем клеток, линзу с диафрагмой, матрицу фотоприемников телекамеры, сигнал с которого передается на компьютер (А.С. Малыгин, Н.В. Бебенина, А.П. Владимиров, К.Н. Микитась, А.А. Бахарев. Спекл - интерферометрическая установка для изучения биологической активности клеток. ПТЭ, 2012, 3, с. 124-127). В качестве источника излучения используют полупроводниковый лазерный модуль с длиной волны =0,532 мкм, получаемая картина спеклов фиксируется и отображается на экране компьютера. О процессах, протекающих в клетках и в питательном растворе, судят по изменяющейся картине спеклов.

К недостаткам известного устройства следует отнести то, что горизонтальное расположение оптической оси системы создает трудности в фиксации кюветы с подложкой с монослоем клеток, формирование изображений при больших увеличениях. Кроме того, как показывает опыт, во время перемещения подложки с клетками происходит изменение условий их жизнедеятельности, в том числе заражение бактериями.

Задача, решаемая заявляемой полезной моделью - расширение арсенала средств прижизненного изучения и визуализации изменений метаболической активности культивированных клеток под влиянием контаминантов неразрушающими методами.

Технический результат - повышение эффективности и точности измерения параметров активности вирусов и других контаминантов в клеточной системе.

Поставленная задача решается тем, что устройство для оценки активности вируса в клеточной системе состоит из лазерного модуля, формирующего поток излучения, последовательно проходящего через матовый рассеиватель излучения и кювету с питательным раствором и подложкой с монослоем исследуемых клеток, объектива микроскопа, формирующего изображение клеток в кювете, матрицу фотоприемников телекамеры, компьютера, снабженного программным обеспечением, обрабатывающим полученную информацию о метаболической активности клеток и формирующего картину спеклов, отличается тем, что лазерный модуль размещен вертикально, под лазерным модулем на светопроницаемой горизонтальной поверхности установлена кювета с питательным раствором и подложкой с монослоем клеток, кювета снабжена крышкой, выполненная с утолщенной нижней частью, а матовый рассеиватель жестко закреплен между лазерным модулем и крышкой кюветы.

Крышка кюветы и кювета выполнены из светопрозрачного материала. В качестве светопрозрачного материала используют прозрачный материал, например, стекло или полупрозрачный материал, в качестве которого используют пластик, например, оргстекло. Крышка снабжена утолщенной нижней частью, что обеспечивает уменьшение длины пути рассеянного излучения в питательном растворе, а также предотвращает перемещение крышки в горизонтальном направлении (сдвиг).

Матовый рассеиватель представляет собой пластину из светопрозрачного материала, например, стекла, на котором, по меньшей мере, с одной стороны выполнена шероховатая поверхность для формирования достаточного количества центров рассеивания луча, например, путем шлифования абразивом поверхности стекла.

Светопрозрачная горизонтальная поверхность для размещения кюветы с питательным раствором и подложкой с монослоем клеток может быть представлена столом микроскопа, снабженного отверстием или прозрачным окном для размещения кюветы.

Заявляемое устройство иллюстрируется рисунком, на котором изображены: 1 - лазерный модуль, 2 - пучок излучения, 3 - матовый рассеиватель, 4 - рассеянное излучение, 5 - крышка кюветы, 7 - питательный раствор, 8 - подложка с монослоем клеток, 9 - стол микроскопа, 10 - микрообъектив микроскопа, 11 - излучение, прошедшее сквозь исследуемый объект, 12 - поворотное зеркало, 13 - матрица фотоприемника телекамеры, 14 - микроскоп, 15 - телекамера, 16 - компьютер, 17 - держатель матового стекла, зафиксированный на столе 9, 18 - держатель лазерного модуля.

Заявляемое устройство работает следующим образом.

Лазерный модуль 1, например, полупроводниковый лазер с длиной волны =0,532 мкм посредством держателя 18 устанавливается на столе 9 инвертированного микроскопа 14 для подачи пучка излучения 2 сверху вниз. Пучок излучения 2, проходя через матовый рассеиватель 3, имеющий множество центров рассеивания, попадает в кювету 6, которая расположена горизонтально на столе 9, при этом последний снабжен отверстием в месте контакта с дном кюветы 6. В качестве кюветы 6 может быть использована ячейка стандартного 96-луночного планшета градации «для культур тканей». Крышка 5 кюветы 6 изготовлена из оргстекла с утолщенной нижней частью, форма которой повторяет форму кюветы 6. На дне кюветы 6 в питательном растворе 7 культивируются клетки 8, размещенные монослоем на подложке. Метаболическая активность клеток определяется путем измерения параметров излучения, прошедшего через исследуемый объект. Для формирования изображения с большим увеличением использовали стандартный микроскоп 14 типа Видеоскан - 414/П/К-USB, с матрицей фотоприемников 13 для регистрации кадров изображения и частотой кадров 25 Гц. Оцифрованные сигналы, пропорциональные интенсивности излучения, поступали с телекамеры 15 через USB-порт на компьютер 16 типа Aspire 3692 WLMi фирмы Acer, где посредством программного обеспечения обрабатывались и расшифровывались с помощью специальной (оригинальной) математической модели. Из-за процессов, проходящих в клетках и в питательном растворе, картина спеклов изменяется, расшифровывается и отображается на экране компьютера.

Заявляемое устройство позволяет повысить чувствительность метода оптической микроскопии, в особенности, по изменению яркости и цвету получаемых спеклов и позволяет эффективно фиксировать изменения активности процессов взаимодействия вируса и клетки, повышает точность оценки активности вируса.

1. Устройство для оценки активности вируса в клеточной системе, состоящее из лазерного модуля, формирующего поток когерентного излучения, последовательно проходящего через матовый рассеиватель излучения и кювету с питательным раствором и подложкой с монослоем исследуемых клеток, объектива микроскопа, формирующего изображение клеток в кювете, матрицу фотоприемников телекамеры и компьютера, снабженного программным обеспечением, обрабатывающим полученную информацию о метаболической активности клеток и формирующего картину спектров, отличающийся тем, что лазерный модуль размещен вертикально, под лазерным модулем на светопроницаемой горизонтальной поверхности установлена кювета с питательным раствором и подложкой с монослоем клеток, кювета снабжена крышкой, выполненной с утолщенной нижней частью, а матовый рассеиватель жестко закреплен между лазерным модулем и крышкой кюветы.

2. Устройство для оценки активности вируса в клеточной системе по п. 1, отличающееся тем, что кювета с крышкой выполнены из светопрозрачного материала.

3. Устройство для оценки активности вируса в клеточной системе по п. 1, отличающееся тем, что матовый рассеиватель представлен в виде пластины из светопрозрачного материала, на одной стороне которой сформирована шероховатая поверхность.

4. Устройство для оценки активности вируса в клеточной системе по п. 1, отличающееся тем, что светопрозрачная горизонтальная поверхность представляет собой стол микроскопа, снабженный отверстием или прозрачным окном для установки кюветы.

РИСУНКИ



 

Наверх