Магнитострикционный уровнемер

 

Заявленное техническое решение относится к измерительной технике и может быть использовано для измерения уровня жидкостей, преимущественно в резервуарах. Магнитострикционный уровнемер содержит чувствительный элемент с помещенным в магнитопроницаемую трубку звукопроводом из магнитострикционного материала, автономный измерительный модуль, находящийся на известном расстоянии от днища емкости, пьезоприемник, блок вычисления интервала времени прохождения ультразвуковых колебаний от поверхности (границы раздела фракций) жидкости до днища емкости, по крайней мере, один поплавок, причем в поплавках размещены активные автономные модули с измерительными схемами под управлением микропроцессоров, измеряющими температуру и давление жидкости в точке расположения, катушками возбуждения звукопровода и магнитными блоками из n постоянных магнитов (кольцевые магниты с радиально ориентированным магнитным полем), где n=1, 2i, размещенных вокруг трубки с возможностью перемещения вдоль нее. Данные блоки соединены друг с другом соответствующим образом. Также он дополнительно содержит «якорь Радомского», представляющий собой стойку с утяжеленным основанием, тремя остроконусными опорами и герметичным объемом в верхней части для размещения автономного модуля. Технический результат состоит в повышении точности измерения уровня (границ раздела фракций) за счет измерения непосредственно глубины жидкости (границы раздела фракций), а не расстояния от поверхности жидкости (границы раздела фракций) до верхней крышки установочного патрубка емкости, которая изменяет свою конфигурацию под воздействием различных факторов (температуры, давления и др.), компенсации погрешности, вызванной температурным коэффициентом расширения звукопровода. Расширены функциональные возможности за счет обеспечения измерения дополнительных параметров фракций жидкости (температура, давление, плотность и т.д.). 1 з.п.ф., 3 фиг.

Заявленное техническое решение относится к измерительной технике и может быть использовано для измерения уровня жидкости преимущественно в резервуарах.

Известно устройство для измерения уровня жидкости, использующее для своей работы ультразвуковые волны. Устройство содержит уровнемерную трубку, специальный звукопровод в виде металлического сердечника, на котором расположена первичная обмотка линейного трансформатора, электроакустический преобразователь, нагруженный на звукопровод, а также поплавок, охватывающий уровнемерную трубку. В блок вторичной электронной аппаратуры входит импульсный генератор, формирователь импульсов отраженных сигналов, логический блок и другие элементы, содержание которых зависит от схемы измерения временного интервала [Бабиков О.И. Ультразвуковые приборы контроля. - Л.: Машиностроение, Ленинградское отделение, 1985, с.117; А.с. СССР 620828, кл. G01F 23/28, 1978].

Недостатками данного устройства измерения уровня жидкости являются низкая точность при измерении больших уровней, невозможность измерения больше одного уровня, что, особенно, актуально для жидкостей, состоящих из нескольких фракций.

Известен ультразвуковой уровнемер, содержащий прямолинейный магнитострикционный звукопровод, сигнальный электроакустический преобразователь, поплавковый элемент с поляризатором, волновой отражатель, усилитель записи, усилитель считывания, блок кодирования и вычислений. Блок кодирования и вычислений подключен к звукопроводу через усилитель записи. Другой выход блока кодирования и вычислений подключен через усилитель считывания к выводам сигнального электроакустического преобразователя. Сигнальный электроакустический преобразователь закреплен на опорном расстоянии от конца звукопровода и подсоединен к выводам усилителя считывания. На другом конце звукопровода жестко закреплен волновой отражатель. Между сигнальным электроакустическим преобразователем и волновым отражателем помещен поплавковый элемент с поляризатором [Патент РФ 2213940, кл. G01F 23/28, G01F 23/30, 2003].

Недостатками данного устройства являются большие питающие напряжения, необходимые для формирования ультразвуковой волны электроакустическим преобразователем (особенно при большой длине звукопровода), что требует решения задачи искробезопасности, невысокая точность измерения, так как не учитывается неопределенность расположения волнового отражателя относительно днища емкости, невозможность измерения нескольких уровней, что характерно для жидкостей, состоящих из нескольких фракций.

Известен поплавковый уровнемер, содержащий электропроводный звукопровод, блок обработки, поплавок, установленный на звукопроводе с возможностью перемещения вдоль него, и проводящий элемент. Кроме того, уровнемер содержит генератор переменного тока, акустический преобразователь, соединенный с верхним концом звукопровода, дискриминатор-формирователь, промежуточный трансформатор, а поплавок содержит генератор электрических импульсов, выпрямитель, расположенные концентрично с отверстием поплавка тороидальный трансформатор и катушку возбуждения, подключенную к генератору электрических импульсов [Патент РФ 2463566, кл. G01F 23/28, 2012].

Недостатками данного уровнемера являются невысокая точность измерения, так как измеряется расстояние от верхней крышки емкости (которая может подвергаться деформации от температуры, избыточного давления и т.д.) до поплавка, а не расстояние от поплавка до днища емкости, невозможность измерения нескольких уровней, что характерно для жидкостей, состоящих из нескольких фракций, невозможность измерения дополнительных параметров жидкости (фракций жидкости), таких как температура, давление, плотность и т.д.

Из известных технических решений наиболее близким по назначению и технической сущности к заявляемому объекту является магнитострикционный уровнемер, содержащий чувствительный элемент с помещенным в диэлектрическую трубку звукопроводом из магнитострикционного материала, обмотку, намотанную на диэлектрическую трубку, по крайней мере, один поплавок с магнитным блоком из n постоянных магнитов, где n=1, 2i, размещенных вокруг изолирующей оболочки с возможностью перемещения вдоль нее, генератор электрического импульса, блок определения уровня, пьезоприемник, формирователь цифрового импульса из преобразованных электрических колебаний с пьезоприемника, блок определения интервала времени между моментом времени формирования магнитоупругого эффекта и моментом времени формирования пьезоэлектрического эффекта [Патент РФ 2222786, кл. G01F 23/28, 2004].

Недостатком этого магнитострикционного уровнемера являются невысокая точность измерения (измеряется расстояние от верхней крышки емкости, которая может подвергаться деформации от температуры, избыточного давления и т.д., до поплавка, а не расстояние от поплавка до днища емкости, не учитывается изменение длины звукопровода от температуры), невозможность измерения в месте расположения поплавка дополнительных параметров жидкости (фракций жидкости), таких как температура, давление, плотность и т.д., а также относительно высокая стоимость, сложность и невысокая надежность чувствительного элемента (особенно при его большой длине) из-за необходимости размещения обмотки по всей его длине.

Задача, на решение которой направлено заявляемое техническое решение, заключается в создании такого магнитострикционного уровнемера, который позволяет повысить точность измерения уровня жидкости (уровней фракций жидкости), в частности путем компенсации погрешности, связанной с температурным изменением длины звукопровода, и измерять дополнительные параметры жидкости (фракций жидкости), такие как температура, давление, плотность и т.д.

Поставленная задача достигается за счет того, что магнитострикционный уровнемер содержит чувствительный элемент с помещенным в магнитопроницаемую трубку звукопроводом из магнитострикционного материала, автономный измерительный модуль, находящийся на известном расстоянии от днища емкости, пьезоприемник, блок вычисления интервала времени прохождения ультразвуковых колебаний от поверхности (границы раздела фракций) жидкости до днища емкости, как минимум, один поплавок, причем в поплавках размещены активные автономные модули с измерительными схемами под управлением микропроцессоров, измеряющими температуру и давление жидкости в точке расположения, и катушками возбуждения звукопровода и магнитные блоки из n постоянных магнитов (кольцевые магниты с радиально ориентированным магнитным полем), где n=1, 2i, размещенных вокруг трубки с возможностью перемещения вдоль нее. Также он дополнительно содержит «якорь Радомского», представляющий собой стойку с утяжеленным основанием, тремя остроконусными опорами и герметичным объемом в верхней части для размещения автономного модуля.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является повышение точности измерения уровня (границ раздела фракций) за счет измерения непосредственно глубины жидкости, а не расстояния от поверхности жидкости до верхней крышки установочного патрубка емкости, которая изменяет свою конфигурацию под воздействием различных факторов (температуры, давления и др.), компенсации погрешности, вызванной температурным коэффициентом расширения звукопровода. Расширены функциональные возможности за счет измерения дополнительных параметров фракций жидкости (температура, давление, плотность и т.д.).

Кроме того, согласно заявляемому техническому решению, пьезоприемник может быть присоединен к микропроцессору, который в свою очередь соединен с автономным источником питания, энергонезависимой памятью и радиомодемом.

Сущность заявляемого технического решения поясняется с помощью графических материалов, в которых:

- на фиг. 1 представлена функциональная схема реализации магнитострикционного уровнемера;

- на фиг. 2 представлена функциональная схема активного автономного модуля с измерительными схемами под управлением микропроцессора и катушкой возбуждения звукопровода;

- на фиг. 3 представлены основные геометрические параметры магнитострикционного уровнемера, важные для понимания его работы.

Магнитострикционный уровнемер состоит из чувствительного элемента, который в свою очередь содержит пьезоприемник 2, установленный на верхнем торце звукопровода 3 в виде проволоки из магнитострикционного материала, не фиксированной в нижней части, помещенной в магнитопроницаемую оболочку 4. Возможно выполнение звукопровода и в виде стержня, но в большинстве конструкций предпочтение отдается проволоке, в связи с ее гибкостью (особенно для больших пределов измерения, т.е. с длинным звуководом), в результате чего упрощается транспортировка магнитострикционного уровнемера. На магнитопроницаемой оболочке 4 размещен (размещены) поплавок (поплавки) 6 с возможностью перемещения вдоль нее (а таким образом и вдоль чувствительного элемента), внутри поплавка установлены катушка связи, автономный модуль под управлением микропроцессора 5 и магнитный блок 7 из кольцевого магнита с радиально ориентированным магнитным полем или n постоянных магнитов, где n=1, 2i.

Нижняя часть магнитопроницаемой оболочки 4 заканчивается герметизирующим концевым устройством 12, к которому прикреплен груз 13 с помощью шпильки 14.

Нижняя часть магнитопроницаемой оболочки 4 с концевым устройством 12 и грузом 13 входит в конструкцию «Якорь Радомского» (стойка 11 с утяжеленным основанием, тремя остроконусными опорами и зафиксированным в верхней части стойки герметичным объемом 9 с автономным модулем под управлением микропроцессора 8 и магнитным блоком 10).

К выходу пьезоприемника 2, присоединен блок определения интервала времени 16, к которому, в свою очередь, присоединен блок определения уровня 15.

Верхняя часть магнитопроницаемой оболочки 4 с пьезоприемником 2, блоками определения интервала времени 16 и блоком определения уровня 15 закрыта герметичным кожухом 1, который при помощи цангового зажима 17, позволяющего первоначально выставить прибор в нужном положении относительно якоря, фиксируется на крышке 18, которая в свою очередь прикреплена к верхней части емкости 19.

Поплавок (поплавки) 6 плавают на поверхности жидкости 20 (на границе раздела фракций жидкости).

Автономный модуль 5 (8) состоит из датчиков параметров жидкости 21 и 22, автономного источника питания 23, микропроцессора 24, накопителя энергии 25, схемы формирования импульсов 26, катушки индуктивности 27, намотанной на гильзе, в которую пропущена магнитопроницаемая оболочка 4 со звукопроводом 3.

Заявляемое техническое решение поясняется во взаимодействии между отдельными элементами в процессе работы.

Автономный модуль 5 для обеспечения высокой энергетической экономичности большую часть времени находится в режиме пониженного энергопотребления (спящем режиме) и только изредка активизируется, формирует кодированную последовательности импульсов, которая посредством катушки индуктивности, окружающей чувствительный элемент, вызывает магнитное поле, которое, взаимодействуя с магнитным полем постоянного магнита (магнитов), вызывает в звукопроводе ультразвуковые колебания, распространяющиеся по звукопроводу вверх и вниз, причем внизу они отражаются от конца звукопровода и также идут вверх. Таким образом, на выходе пьезоприемника от каждого автономного модуля принимается по два сигнала, задержанные друг от друга на удвоенное время прохождения ультразвуковых колебаний от данного автономного модуля (допустим, он расположен на поверхности жидкости) до нижнего конца звукопровода. Однако, поскольку звукопровод закреплен сверху к крышке емкости, то расстояние от нижнего конца звукопровода до днища емкости может изменяться при изменении температуры, вызывающей изменение длины звукопровода, и других факторов, вызывающих деформацию крыши емкости, поэтому глубина погруженной части звукопровода также будет изменяться, а значит и удвоенное время прохождения ультразвуковых колебаний от данного автономного модуля до нижнего конца звукопровода будет изменяться, т.к. возможно изменение длины части звуковода, расположенной ниже магнитной системы автономного модуля. Для того, чтобы устранить эту ошибку, используется еще один автономный модуль 8, жестко зафиксированный относительно дна емкости.

Вычисление уровня жидкости производится в соответствии с соотношением (см. фиг. 3):

где

h - расстояние от измерительного поплавка до днища емкости, м;

h 1 - расстояние от измерительного поплавка до нижнего конца звукопровода, м;

h2 - расстояние от измерительной системы якоря до нижнего конца звукопровода, м;

h3 - расстояние от измерительной системы якоря до днища емкости, м;

Vзв - скорость звука в звукопроводе, м/с.

Расстояние от измерительной системы якоря до днища емкости 3 может быть измерено с высокой точностью при первоначальном размещении измерителя в емкости с жидкостью в результате привязки конкретного уровнемера к емкости путем замеров уровня контрольной рулеткой относительно высотного трафарета по паспорту и градуировочной таблице. Значение этой величины вводится в блок определения уровня и используется для вычислений.

Положение нижнего конца звукопровода в процессе эксплуатации может изменяться из-за изменения длины звукопровода при изменении температуры, деформации крыши емкости при изменении температуры, давления, механических деформаций, однако это не будет вносить ошибку в измерения, так как данная погрешность будет компенсироваться при вычитании задержек и . С учетом кодирования принимаемых пьезоприемником ультразвуковых колебаний, производится разделение информации от каждого из автономных модулей, поэтому можно измерять нескольких уровней (границ раздела фаз жидкости) одновременно, причем в кодированной информации от каждого из них содержатся дополнительные параметры жидкости в точке расположения каждого из автономных модулей.

Подробнее работу магнитострикционного уровнемера можно уяснить, рассмотрев взаимодействие между его отдельными элементами.

Микропроцессор 24 автономного модуля большую часть времени находится в режиме пониженного энергопотребления (спящем режиме) и только изредка активизируется, считывает измеренные датчиками 21 и 22 параметры (например, температуру и давление), выдает команду на накопление энергии накопителю 25 от автономного источника питания 23 и в необходимые моменты запускает схему формирования импульсов передачи 26, которая подключает накопитель энергии к катушке индуктивности 27, формирующей магнитное поле, в результате взаимодействия которого с магнитным полем постоянного магнита (например, 7) и магнитострикционного эффекта возникают ультразвуковые колебания в звукопроводе. Ультразвуковые колебания, достигающие пьезоприемника 2, за счет пьезоэлектрического эффекта вызывают на выходе последнего импульсы напряжения, которые поступают на вход блока вычисления интервала времени прохождения ультразвуковых колебаний от поверхности (границы раздела фракций) жидкости до днища емкости 16, который вычисляет этот интервал времени и подает его на блок определения уровня 15, результаты работы которого могут быть отображены на индикаторном устройстве (например, цифрового типа), либо переданы для хранения и отображения потребителю. Переданные от датчиков дополнительные параметры жидкости могут использоваться в алгоритме вычисления блока определения уровня, либо передаваться потребителю.

1. Магнитострикционный уровнемер, характеризующийся тем, что он включает чувствительный элемент с помещенным в магнитопроницаемую трубку звукопроводом из магнитострикционного материала, автономный измерительный модуль, находящийся на известном расстоянии от днища емкости, пьезоприемник, блок вычисления интервала времени прохождения ультразвуковых колебаний от поверхности (границы раздела фракций) жидкости до днища емкости, по крайней мере, один поплавок, причем в поплавках размещены активные автономные модули, измеряющие температуру и давление жидкости в точке расположения, с измерительными схемами под управлением микропроцессоров, катушками возбуждения звукопровода и магнитными блоками из n постоянных магнитов (кольцевые магниты с радиально ориентированным магнитным полем), где n=1, 2i, размещенными вокруг трубки с возможностью перемещения вдоль нее, а также дополнительно содержит «якорь Радомского», представляющий собой стойку с утяжеленным основанием, тремя остроконусными опорами и герметичным объемом в верхней части для размещения автономного модуля.

2. Магнитострикционный уровнемер по п.1, отличающийся тем, что в него установлены автономный источник питания, цифровая схема хранения результатов измерения, радиомодем и антенна.



 

Похожие патенты:

Изобретение относится к области бесконтактного измерения уровня различных физических сред

Изобретение относится к нефтегазодобывающей промышленности, и может быть использовано при механизированной добыче нефти с помощью электроприводного насосного оборудования
Наверх