Подающая система бурового станка

 

Предложение относится к горному делу, а именно к шарошечным буровым станкам, применяемым для бурения взрывных скважин.

Подающая система бурового станка включает размещенную в направляющих 1 мачты 2 каретку 3 с вращателем 4 и буровым ставом 5, связанные с кареткой канатно-полиспастные системы 6, 7, фрикционные лебедки 8, 9.

Для привода фрикционных лебедок применены асинхронные двигатели 10, 11 и регулятор 12 частоты вращения привода лебедок.

Асинхронный двигатель 10 снабжен датчиком 13 крутящего момента. Подающая система бурового станка выполнена с блоками 14, 15 частотного управления приводов лебедок. Выход 16 регулятора частоты вращения привода лебедок соединен с входами 17, 18 блоков 14, 15 частотного управления приводов лебедок, датчик 13 крутящего момента соединен с двигателем 10 лебедки 8, а выход 19 датчика соединен с входами 20, 21 блоков частотного управления приводов лебедок.

Для управления каждого из асинхронных двигателей применяют частотный преобразователь. Посредством изменения частоты задают прямолинейную рабочую характеристику 22, 23 момент (М)-частота вращения () каждого из двигателей

Регулятором 12 частоты вращения синхронизируют частоту вращения двигателей лебедок. Посредством датчика 13 крутящего момента замеряют крутящий момент на двигателе 10 и сигнал с выхода 19 датчика 13 крутящего момента подают на вход блока 21, производя коррекцию нагрузки на двигателе 11 по замеренному крутящему моменту, изменяя угол Lbc1 прямолинейной рабочей характеристики момент-частота вращения (фиг.4). При этом угол Lbc прямолинейной рабочей характеристики момент-частота вращения на двигателе 10 (фиг.3) оставляют постоянным.

Это позволит компенсировать несинхронность чисел оборотов двигателей лебедок подачи, разницу диаметров барабанов лебедок и канатов, величин проскальзывания канатов на приводных барабанах и сил трения в направляющих и устранить перекос каретки, который приводит к деформации направляющих мачты, самой мачты, а также выходу из строя лебедок.

Предложение относится к горному делу, а именно к шарошечным буровым станкам, применяемым для бурения взрывных скважин.

Известна подающая система бурового станка, включающая каретку с вращателем и буровым ставом, канатно-полиспастную систему, фрикционные лебедки, асинхронные двигатели приводов фрикционных лебедок и регулятор частоты вращения привода лебедок [1].

Однако известное устройство используют в качестве регулятора частоты вращения привода лебедок гидравлический двигатель, что требует при наличии электроприводов на приводе хода и вращателе установки дополнительной маслостанции, что приводит к уменьшению КПД устройства, а также к его удорожанию.

Кроме того, вследствие расхождения в пределах допусков чисел оборотов двигателей лебедок подачи, диаметров барабанов и канатов, величин проскальзывания канатов на приводных барабанах и сил трения в направляющих, может возникнуть перекос каретки, который приводит к деформации направляющих мачты, самой мачты, а также выходу из строя лебедок.

Многочисленные попытки установить компенсирующие устройства для устранения перекоса каретки не привели к удовлетворительному результату[2].

Результат, для достижения которого направлено данное техническое решение, заключается в повышении КПД устройства при одновременном повышении надежности устройства.

Указанный результат достигается за счет того, что подающая система бурового станка, включающая каретку с вращателем и буровым ставом, канатно-полиспастную систему, фрикционные лебедки, асинхронные двигатели приводов фрикционных лебедок и регулятор частоты вращения привода лебедок, снабжена датчиком крутящего момента и блоками частотного управления приводов лебедок, причем электропривода выполнены в виде асинхронных двигателей, выход регулятора частоты вращения привода лебедок соединен с каждым из первых входов блоков частотного управления приводов лебедки, датчик крутящего момента соединен с приводом одной из лебедок, а его выход соединен со вторыми входами блоков частотного управления приводов лебедок.

На фиг.1 представлена принципиальная схема подающей системы бурового станка, на фиг.2 - схема привода лебедки, на фиг.3 и 4 показаны соответственно рабочие характеристики момент-частота вращения двигателей привода лебедок.

Подающая система бурового станка включает размещенную в направляющих 1 мачты 2 каретку 3 с вращателем 4 и буровым ставом 5, связанные с кареткой канатно-полиспастные системы 6, 7, фрикционные лебедки 8, 9.

Для привода фрикционных лебедок применены асинхронные двигатели 10, 11 и регулятор 12 частоты вращения привода лебедок.

Асинхронный двигатель 10 снабжен датчиком 13 крутящего момента.

Подающая система бурового станка выполнена с блоками 14, 15 частотного управления приводов лебедок. Выход 16 регулятора частоты вращения привода лебедок соединен с входами 17, 18 блоков 14, 15 частотного управления приводов лебедок, датчик 13 крутящего момента соединен с двигателем 10 лебедки 8, а выход 19 датчика соединен с входами 20, 21 блоков частотного управления приводов лебедок.

Для управления каждого из асинхронных двигателей применяют частотный преобразователь. В качестве преобразователя, например, может быть использован преобразователь частоты фирмы Schneider Electric, «Altivar 71», Посредством изменения частоты задают прямолинейную рабочую характеристику 22, 23 момент (М) - частота вращения () каждого из двигателей (как это показано на фиг.3 и 4).

Регулятором 12 частоты вращения синхронизируют частоту вращения двигателей лебедок. Посредством датчика 13 крутящего момента замеряют крутящий момент на двигателе 10 и сигнал с выхода 19 датчика 13 крутящего момента подают на вход блока 21, производя коррекцию нагрузки на двигателе 11 по замеренному крутящему моменту, изменяя угол Lbc1 прямолинейной рабочей характеристики момент-частота вращения (фиг.4). При этом угол Lbc прямолинейной рабочей характеристики момент-частота вращения на двигателе 10 (фиг.3) оставляют постоянным.

Это позволит компенсировать несинхронность чисел оборотов двигателей лебедок подачи, разницу диаметров барабанов лебедок и канатов, величин проскальзывания канатов на приводных барабанах и сил трения в направляющих и устранить перекос каретки, который приводит к деформации направляющих мачты, самой мачты, а также выходу из строя лебедок.

Таким образом, данное техническое решения позволит:

- повысить КПД устройства;

- увеличить надежность устройства;

- упростить и удешевить подающую систему бурового станка.

Источники информации

1. Авторское свидетельство СССР 717268, МКИ - Е21В 3/00, Е21В 7/02, 76

2. Авторское свидетельство СССР 1081330, МКИ - Е21В 3/00, 82

3. Schneider Electric, «Altivar 71, Преобразователи частоты для асинхронных двигателей»,

1.pdf, 12.2005

Подающая система бурового станка, включающая каретку с вращателем и буровым ставом, канатно-полиспастную систему, фрикционные лебедки, асинхронные двигатели приводов фрикционных лебедок и регулятор частоты вращения привода лебедок, отличающаяся тем, что она снабжена датчиком крутящего момента и блоками частотного управления приводов лебедок, причем выход регулятора частоты вращения привода лебедок соединен с каждым из первых входов блоков частотного управления приводов лебедок, датчик крутящего момента соединен с приводом одной из лебедок, а его выход соединен со вторыми входами блоков частотного управления приводов лебедок.



 

Похожие патенты:

Буровой станок представляет собой специальную машину, размещённую на самоходной платформе или передвижной раме, применяемую для бурения вращательным роторным способом взрывных и разведочных скважин и шпуров при открытой и подземной разработке полезных ископаемых.

Изобретение относится к испытаниям двигателя внутреннего сгорания, в частности к стендам для обкатки двигателей, и может быть использовано при создании нагружающих устройств испытательных стендов двигателя внутреннего сгорания
Наверх