Сердечник бронебойной пули

 

Полезная модель относится к боеприпасам, в частности к пулям автоматным и винтовочным, имеющим сердечник из твердого сплава с высоким пробивным действием. В основу полезной модели поставлена задача повышения поражающей способности сердечника. В процессе решения поставленной задачи достигается технический результат, заключающийся в увеличение запреградной скорости твердосплавного сердечника при пробитии металлической брони и увеличения запреградного поражения осколочными фрагментами брони образованными сердечником при выходе из брони.

Указанный технический результат достигается сердечником бронебойной пули, выполненный выполненный из твердого сплава с пределом прочности на сжатие более 4000 МПа, твердостью HRA не ниже 88,5 единиц, коэффициент интенсивности напряжений К не ниже 8 МПа*м1/2, имеет форму тела вращения в виде соединенных между собой головной части в виде конуса и хвостовой части в виде цилиндра, головная часть выполнена остроконечной, длина головной части составляет (0,7-2,1)d, длина сердечника составляет (1,95-5,55)d, хвостовая часть имеет фаску или радиус закругления до 0,15d, где d - диаметр сердечника пули равен (0,6-0,95)D, где D - калибр пули, поверхность сердечника полностью или частично имеет шероховатость не хуже Ra 1.6, материал сердечника содержит от 6 до 9% масс. кобальта и/или никеля, остальное карбид вольфрама, при этом количество зерен основной фракции карбида вольфрама с размером 1-2 мкм составляет не менее 60%, размер отдельных крупных зерен карбида вольфрама с размером зерен более 4-х кратного превышении среднего размера зерна не допускается, при этом остроконечная часть конуса имеет контактную площадку, диаметр которой равен (0.018-0,25)D, где D - калибр пули.

Полезная модель относится к боеприпасам, в частности к пулям автоматным и винтовочным, имеющим сердечник из твердого сплава.

Известно техническое решение, в котором сердечник бронебойной пули выполнен из твердого сплава с пределом прочности на сжатие более 4000 МПа, твердостью HRA не ниже 88,5 единиц, коэффициентом интенсивности напряжений К не ниже 8 МПа·м1/2, при этом поверхность сердечника полностью или частично имеет шероховатость не выше Ra 0,8 в виде тела вращения, состоящего из головной части, имеющей оживальную форму в виде конуса, и хвостовой части, имеющей форму соединенных между собой цилиндра и усеченного конуса, меньший диаметр конуса равен 0,80-0,98 диаметра большего диаметра конуса хвостовика, который равен диаметру цилиндра и диаметру головной части сердечника, а длина цилиндрической части составляет 0,01-100 длины усеченного конуса хвостовика, поверхность сердечника полностью или частично имеет шероховатость не выше Ra 0,8, что конус головной части сердечника выполнен остроконечным с углом при вершине от 10 до 38°. (Патент RU 97514).

Недостатком известного решения является недостаточная запреградная поражающая способность сердечника при пробитии им металлической брони. Недостаток обусловлен неоптимальным соотношением геометрических параметров сердечника и микроструктуры твердого сплава.

Известно техническое решение, принятое в качестве прототипа, в котором сердечник выполнен из твердого сплава с пределом прочности на сжатие более 4000 МПа, твердостью HRA не ниже 88,5 единиц, коэффициент интенсивности напряжений К не ниже 8 МПа*м1/2, имеет форму тела вращения в виде соединенных между собой головной части в виде конуса и хвостовой части в виде цилиндра, головная часть выполнена остроконечной при этом остроконечная часть имеет скругление острия конуса до 0,33 мм, длина головной части составляет (0,7-2,1)d, длина сердечника составляет (1,95-5,55)d, хвостовая часть имеет фаску или радиус закругления до 0,15d, где d - диаметр сердечника пули равен (0,6-0,95)D, где D - калибр пули, поверхность сердечника полностью или частично имеет шероховатость не хуже Ra 1,6, материал сердечника содержит от 6 до 9% масс. кобальта и/или никеля, остальное карбид вольфрама, при этом количество зерен основной фракции карбида вольфрама с размером 1-2 мкм составляет не менее 60%, размер отдельных крупных зерен карбида вольфрама с размером зерен более 4-х кратного превышении среднего размера зерна не допускается. Данное техническое решение оптимизировано по микроструктурным параметрам твердого сплава из которого изготовлен сердечник (Патент RU 112390).

Недостатком известного решения является недостаточная запреградная пробивная способность сердечника при пробитии им металлической брони при увеличении калибра пули, при этом сердечник остается не разрушенным.

В основу полезной модели поставлена задача повышения поражающей способности сердечника.

В процессе решения поставленной задачи достигается технический результат, заключающийся в увеличение запреградной скорости твердосплавного сердечника при пробитии металлической брони и увеличения запреградного поражающего воздействия пули осколочными фрагментами брони образованными сердечником при выходе из брони.

Указанный технический результат достигается заявляемым сердечником бронебойной пули, выполненный из твердого сплава с пределом прочности на сжатие более 4000 МПа, твердостью HRA не ниже 88,5 единиц, коэффициент интенсивности напряжений K1C не ниже 8 МПа*м1/2, имеющим форму тела вращения в виде соединенных между собой головной части в виде конуса и хвостовой части в виде цилиндра, головная часть выполнена остроконечной, длина головной части составляет (0,7-2,1)d, длина сердечника составляет (1,95-5,55)d, хвостовая часть имеет фаску или радиус закругления до 0,15d, где d - диаметр сердечника пули равен (0,6-0,95)D, где D - калибр пули, поверхность сердечника полностью или частично имеет шероховатость не хуже Ra 1,6, материал сердечника содержит от 6 до 9% масс. кобальта и/или никеля, остальное карбид вольфрама, при этом количество зерен основной фракции карбида вольфрама с размером 1-2 мкм составляет не менее 60%, размер отдельных крупных зерен карбида вольфрама с размером зерен более 4-х кратного превышении среднего размера зерна не допускается, при этом остроконечная часть конуса имеет контактную площадку, диаметр которой равен (0.018-0,25)D, где D - калибр пули.

Снижение числа сердечников, которые хрупко разрушаются, при пробитии брони достигается за счет выполнения сердечника оптимального по геометрической форме и по свойствам материала. Изготовление сердечника в виде тел вращения, соединенных между собой головной части в виде конуса и хвостовой части в виде цилиндра с оптимальными геометрическими размерами позволяет повысить кучность поражения при увеличении дальности. Оптимизация физико-механических свойств твердосплавного материала, из которого изготовляется сердечник с оптимальной макро и микроструктурой позволяют сердечнику выдерживать высокие контактные нагрузки в момент соударения с броней. В точке контакта происходит значительное повышение температуры и давлений за короткий промежуток времени. Экспериментально установлено, что в месте контакта появляются области, с сильно локализованной пластической деформацией, называемые плоскостями адиабатического сдвига (ПАС), в окрестностях которых концентрируется тепло. Быстрое деформирование металла приводит к локализованному нагреву контакта и катастрофическому разрушению брони в виде плавления. Выполняя остроконечную часть конуса с контактной площадкой, диаметр которой равен (0.018-0,25)D, где D - калибр пули, мы получаем стабильные результаты по пробитию брони, так как каждый раз повторяется один и тот же механизм пробития с образованию ПАС в первой стадии пробития брони и хрупким разрушение тыльной стороны бронеплиты во второй стадии пробития плиты. При реализации такого механизма пробития не происходит хрупкого разрушения сердечника, он сохраняет свою форму а, реализация менее энергоемкого хрупкого разрушения, сохраняет его кинетическую энергию, а, следовательно, запреградное поражающее действие.

Оценка материала по микроструктуре позволяет проводить оптимизацию материала для сердечника пули, обладающего максимальной пробивной способностью с сохранением высокой стабильности. Основным недостатком твердых сплавов, получаемых жидкофазным спеканием, являются нестабильные прочностные свойства, которые, в свою очередь, являются следствием неоднородностью структуры (вследствие активно протекающих процессов рекристаллизации, имеющих аномальный характер). Так в твердых сплавах заготовки с плотностью от 13 до 15 г/см3 имеют средний размер зерна 2,5 мкм при этом значительную объемную долю, составляют зерна размером до 5-10 мкм, а также скопления кобальта, размер которых достигает 12 мкм. Столь высокий уровень неоднородности, приводит как к снижению механических свойств твердых сплавов, так и к их значительному разбросу, и не позволяет сердечнику выдерживать высокие контактные нагрузки в момент соударения с броней. Оптимизация сплава по микроструктуре, по количеству зерен основной фракции карбида вольфрама с размером 1-2 мкм не менее 60%, отсутствием размеров отдельных крупных зерен карбида вольфрама с размером зерен более 4-х кратного превышении среднего размера зерна позволяют сохранить высокую точность воспроизведения свойств материала, при использовании различных технологических процессов спекания твердых сплавов. Сплав, содержащий по количеству не менее 60% зерен основной фракции карбида вольфрама с размером 1-2 мкм, максимально противостоит ударным нагрузкам. Наиболее важным параметром, позволяющим сохранить высокую пластичность, является содержание кобальта и/или никеля и карбида вольфрама. Оптимальным для сердечника является содержание кобальта и/или никеля от 6 до 9% масс и остальное карбид вольфрама.

Важную роль в механизмах разрушения играют поверхностные дефекты, которые появляются в процессе изготовления сердечника. Устранение дефектного слоя сердечника, доведение его поверхности до шероховатости Ra 1,6 и ниже, позволит значительно повысить его пробивную способность за счет исключения зарождения и развития поверхностных микротрещин. Дополнительная механическая обработка позволит повысить точность изготовления сердечника, уменьшить разброс его по весу, оптимизировать геометрические параметры, что, в конечном счете улучшит кучность и увеличит дальность поражения.

Как правило, с увеличением калибра пули увеличивается и общая длина сердечника и время прохождения сердечником всей толщины брони. Остроконечный сердечник со скругленным острием конуса до 0,33 мм разрушает металлическую броню по механизму прокола с образованием отверстия за счет расплавления металла. При таком механизме разрушения сердечник остается целым, но при этом его запреградная скорость значительно снижается. При недостаточной скорости соударения сердечника с поверхностью брони, энергии не хватает, что бы расплавить металл и сердечник может остаться в броне. На фиг.1 показано (фото для эксперта) когда сердечник со скругленным острием конуса до 0.33 мм (прототип), только наполовину выходит из бронеплиты. Недостаток обусловлен неоптимальным соотношением геометрических параметров острия сердечника. Авторами предлагаемого технического решения установлено, что возможно реализация механизма разрушения брони, когда на первом этапе внедрения сердечника в броню реализуется энергоемкий механизм пробития проколом с расплавлением металла и на втором этапе прохождения сердечником брони, когда сердечник выходит и брони с реализацией механизма разрушения менее энергоемкого, а именно хрупкого разрушения тыльной стороны. Такой смешанный механизм пробития брони, по мнению авторов, возможен при наличии у сердечника в головной части контактной площадки, диаметр которой равен (0.018-0,25)D, где D - калибр пули, это подтверждают экспериментальные данные при фрактографическом исследовании внутренней поверхности пулевого отверстия. Механизм хрупкого разрушения тыльной стороны брони реализуется сердечниками, имеющими контактную площадку в головной части сердечника. Наличие такой площадки большого размера может привести к разрушению самого сердечника. Проведенные исследования показали, что при наличии контактной площадки, диаметр которой равен (0.018-0,25)D, где D - калибр пули, внутренняя поверхность пулевого отверстие имеет различные зоны по отражательной способности на входном и выходном кратерах отверстия, тогда как внутренняя поверхности пулевого отверстия сердечником образованная сердечником прототипа практически не имеет такого четкого разделения. Отличие заключается в характерной зоне на выходе из отверстия (фиг 2. фото для эксперта). В первом случае (прототип) зона, в которой происходит откол частиц на выходе очень маленькая, и имеются отогнутые по ходу движения сердечника лепестки из металла брони. При этом лепестки не имеют зон долома и хрупкого разрушения у основания отгиба. Совсем другой механизм разрушения наблюдается при пробитии брони сердечником, у которого имеется контактная площадка в головной части. В данном случае, на выходе из отверстия, практически отсутствуют части брони в виде лепестков. Отчетлива, видна зона отрыва кусочков брони на выходе из отверстия. Наблюдаются зоны разрушения отрывом и характерные для хрупкого разрушения. При наличии контактной площадки в головной части сердечника, при пробитии брони реализуется смешанный механизм разрушения брони. Первый этап - внедрение сердечника в броню у остроконечного сердечника и сердечника с контактной площадкой идентичны, реализуются энергоемкие механизмы пробития проколом с расплавлением металла. При дальнейшем внедрения сердечника с контактной площадкой, контактная площадка впереди себя формирует кольцевые трещины с образованием так называемых конусов Герца (Каркашадзе Г.Г. Механическое разрушение горных пород: Учеб. пособие для вузов. - М.: Издательство Московского государственного горного университета. 2004. - стр.136-137). Нагрузка внутри конуса Герца возрастает и под площадкой сердечника формируется опережающее ядро уплотнения - зона всестороннего сжатия. В ядре сжатия материал брони испытывает напряжения многократно, на один-два порядка превышающие базовую прочностную характеристику - предел прочности при одноосном сжатии. Ядро уплотнения накапливает потенциальную энергию деформаций. В момент выхода концентрических трещин на поверхность образуется выходной кратер, потенциальная энергия деформаций переходит в кинетическую энергию фрагментов брони, вызывая их отрыв, фрагментацию и разлет с большой скоростью, до 100 м/с. После завершения акта освобождения выходной зоны от фрагментов разрушения, сердечник продолжает движении за преградой брони с большой скоростью.

Выполняя головную часть наконечника в пределах (0,7-2,1)d, при общей длине сердечника (1,95-5,55)d, хвостовую цилиндрическую часть с фаской или радиусом закругления до 0,15d, где d - диаметр сердечника, а диаметр сердечника равен (0,6-0,95)D, где D - калибр пули и выполняя остроконечную часть конуса с плоской контактной площадкой, диаметр которой равен (0.018-0,25)D, где D - калибр пули, мы получим сердечник, который создает ядро уплотнения под площадкой сердечника, потенциальная энергия которого переходит в кинетическую энергию фрагментов брони, вызывая их отрыв, фрагментацию и разлет с большой скоростью.

На фигуре 3 представлена конструкция заявляемого сердечника. Сердечник состоит из головной части в виде конуса 1, его остроконечная часть имеет плоскую контактную площадку 2 диаметр которой равен (0.018-0,25)D, где D - калибр пули. Хвостовая часть в виде цилиндра 3 имеет фаску 4 или радиус закругления, при этом длина головной части конуса 1 составляет (0,7-2,1)d, длина сердечника составляет (1,95-5,55)d, а фаска 4 или радиус закругления до 0,15d, где d - диаметр сердечника, a d в свою очередь равен (0,6-0,95)D, где D - калибр пули, поверхность сердечника полностью или частично имеет шероховатость не хуже Ra 1,6.

Для улучшения механических свойств сердечника, главным образом твердости и трещиностойкости использовали порошки карбида вольфрама с возможно меньшим размером частиц и новые методы консолидации, обеспечивающие высокую скорость спекания, стабильность и однородность структуры сплава. Спекание проводиться в две стадии: предварительное - с целью удаления пластификатора в водородной атмосфере и окончательное вакуумное при выбранных оптимальных технологических режимах.

Для подтверждения высокого запреградного поражающего действия сердечника проводили сравнительные стрельбы с бронебойными пулями калибра 7,62 с твердосплавным сердечником изготовленным по прототипу. В качестве пробиваемого материала использовалась бронеплита марки 2П толщиной 10 мм на удалении 200 метров. Запреградное действие пули оценивали по пробитию пакета сосновых досок толщиной 25 мм расположенному сразу за броней. Определяли глубину проникновения сердечника в пакет из досок и количеству осколков прошедших одну доску.

В таблице предоставлены результаты сравнительных испытаний.

Таблица.
Тип сердечникаПроцент пробития бронеплиты от зачетного % попаданий Количество пробитых досок/Количество осколочных повреждений
200 м250 м300 м200 м250 м300 м
Прототип. Твердосплавной сердечник, коническая головная часть с закруглением 0.33 мм. 100%100%10%до 4/1-2до 4/0-11/0
Предлагаемое техническое решение. Твердосплавной сердечник, коническая головная часть имеет контактную, диаметр которой равен (0.018-0,25)D, где D - калибр пули100% 100%30%свыше 6/4-65-6/3-52-3/3-4

Как видно из результатов эксперимента, предлагаемый сердечник имеет более высокую запреградную скорость (количество пробитых досок больше) и количество значимых повреждений осколками бронеплиты по сравнению с прототипом.

Сердечник бронебойной пули, выполненный из твердого сплава с пределом прочности на сжатие более 4000 МПа, твердостью HRA не ниже 88,5 единиц, коэффициент интенсивности напряжений К 1c не ниже 8 МПам1/2, имеет форму тела вращения в виде соединенных между собой головной части в виде конуса и хвостовой части в виде цилиндра, головная часть выполнена остроконечной, длина головной части составляет (0,7-2,1)d, длина сердечника составляет (1,95-5,55)d, хвостовая часть имеет фаску или радиус закругления до 0,15d, где d - диаметр сердечника пули, равный (0,6-0,95)D, где D - калибр пули, поверхность сердечника полностью или частично имеет шероховатость не хуже Ra 1.6, материал сердечника содержит от 6 до 9 мас.% кобальта и/или никеля, остальное карбид вольфрама, при этом количество зерен основной фракции карбида вольфрама размером 1-2 мкм составляет не менее 60%, размер отдельных крупных зерен карбида вольфрама с размером зерен более 4-кратного превышении среднего размера зерна не допускается, отличающийся тем, что остроконечная часть конуса имеет контактную площадку, диаметр которой равен (0,018-0,25)D, где D - калибр пули.



 

Наверх