Центральная станция системы радиосвязи с подвижными объектами

 

Полезная модель относится к технике радиосвязи и может быть использована для организации цифровой связи в системах автоматизированного обмена данными в каналах «воздух-земля» и «земля-воздух». Основной технической задачей, на решение которой направлена заявляемая полезная модель, является повышение информативности операторов центральной станции за счет совместной обработки информации линий передачи данных ОВЧ и ВЧ диапазонов за счет введения приемной станции ВЧ диапазона, связанной непосредственно с вычислителем наземной станции и передающей станции ВЧ диапазона, связанной через соответствующие модемы с тем же вычислителем.

Полезная модель относится к технике радиосвязи и может быть использована для организации цифровой связи в системах автоматизированного обмена данными в каналах «воздух-земля» и «земля-воздух».

Известна система радиосвязи с подвижными объектами (ПО), содержащая в наземной приемопередающей станции приемник, демодулятор, дешифратор сообщений, буферный регистр адресов подвижных объектов, первый элемент И, дешифратор приоритетов сообщений, блок таймеров приоритетных сообщений, блок регистров приоритетных сообщений, коммутатор-распределитель сообщений, счетчик числа подвижных объектов, счетчик загрузки системы, генератор тактовых импульсов свободного доступа, формирователь временного окна, генератор тактовых импульсов адресного опроса, линию задержки, второй элемент И, ключ свободного доступа, блок выдачи данных как источник информации, ключ адресного опроса, буферный запоминающий блок, счетчик числа переспросов, генератор импульсов сброса, блок регистрации данных, модулятор и передатчик, модем наземной связи, датчик местоположения, преобразователь формата данных, пульт управления наземной приемопередающей станции [1].

К недостаткам данной системы следует отнести отсутствие возможности выполнения функций центральной станции радиосвязи с подвижными объектами, находящимися за горизонтом.

Известна центральная станция (ЦС) системы радиосвязи с подвижными объектами - воздушными судами (ВС), содержащая последовательно соединенные приемник линии передачи данных по каналу «воздух-земля» (ЛПД), демодулятор и блок дешифраторов адреса. В этих узлах осуществляется прием и предварительная обработка сигналов с ВС. При дальнейшей обработке используются: генератор импульсов, n таймеров, счетчик загрузки системы, блок задания приоритетов, счетчик числа приоритетных сообщений, последовательно соединенные, блок хранения сигнала передачи, блок регистрации данных, блок выдачи данных, n элементов И, n счетчиков импульсов, n ключей, блок управления, n первых, n вторых формирователей импульсов, третий, четвертый формирователи импульсов, первый, второй, третий, четвертый элементы ИЛИ, где n - число обрабатываемых сообщений с подвижных объектов. Сигнальный выход блока дешифраторов адреса соединен с входами ключей, выходы которых через четвертый элемент ИЛИ соединены с сигнальным входом блока управления, входы сравнения блока дешифратора адреса соединены с входом задания приоритетов, входами счетчиков импульсов и входами «Сброс». Выходы n линий задержки через соответствующие таймеры соединены с первыми входами соответствующих элементов И, выходы которых соединены с входами задержки соответствующих счетчиков импульсов. Выходы счетчиков импульсов через соответствующие вторые формирователи импульсов соединены с входами второго элемента ИЛИ, выход которого соединен с входом «Сброс» счетчика подвижных объектов. Вход записи счетчика подвижных объектов соединен с выходом первого элемента ИЛИ, входы которого через соответствующий первый формирователь импульсов соединен с выходом сравнения блока дешифраторов адреса. Выход генератора импульсов соединен с вторыми входами n элементов И. Выход счетчика подвижных объектов соединен через третий элемент ИЛИ с входом счетчика загрузки системы, выход которого соединен с управляющим входом блока задания приоритетов и вторым входом блока управления. Первый выход блока управления через третий формирователь импульсов соединен с вторым входом третьего элемента ИЛИ, третий вход которого соединен с выходом четвертого формирователя импульсов. Вход четвертого формирователя импульсов соединен с выходом блока включения передатчика на передачу. Выходы блока задания приоритетов соединены с входами управления первых ключей. Блок обработки сообщений (БОС) соединен с группой из m модемов. Вход блока блокировки приема является высокочастотным входом станции, а выход подключен к входу приемника. Управляющий вход блока блокировки приема подключен к выходу блока формирования сигнала «Включение передачи». Первый вход/выход БОС через последовательно соединенные (m+2)-й и (m+1)-й модемы и блок адресной коммутации соединен с выходом блока управления. Выход блока адресной коммутации подключен к входу блока хранения сигналов передачи, m выходов БОС через m соответствующих модемов являются низкочастотными выходами станции. Начальная установка блоков задания приоритетов и управления, генератора тактовых импульсов БОС, счетчика загрузки системы осуществляется путем подачи на соответствующие входы сигнала «Сброс». В БОС блок преобразования форматов соединен двухсторонними связями с (m+2)-м модемом, маршрутизатором, блоком хранения адресной базы, блоком тарификации, блоком хранения сообщений, блоком отображения, пультом управления. Генератор тактовых импульсов подключен к синхровходам блока преобразования форматов, маршрутизатора, блока хранения адресной базы, блока тарификации, блока хранения сообщений, блока отображения, пульта управления. Блок хранения адресной базы соединен двухсторонними связями с маршрутизатором и блоком тарификации. Причем m входов/выходов маршрутизатора соединены с соответствующими m модемами [2]. В передатчике формируются радиосигналы на ВС с помощью данных формирователя сигнала включения передачи. Проводимые операции по демодуляции, дешифрации адреса, заданию приоритетов, задержке сигналов, счету, формированию, логической обработке, коммутации и генерации импульсов, счету числа подвижных объектов, приоритетных сообщений и загрузке системы, адресной коммутации, хранению сигнала передачи и адресов представляют собой функции, выполняемые известным блоком обработки канальных сигналов (БОКС) - (наземным процессором).

К недостаткам аналога следует отнести то, что он рассчитан на работу только в зоне прямой видимости, что сужает его зону обслуживания воздушных судов.

Наиболее близкой к заявляемому объекту является центральная станция (ЦС) системы радиосвязи с подвижными объектами - воздушными судами [3], содержащая М канальных блоков. Сформированные на ВС сообщения последовательно во времени через последовательно соединенные антенну, высокочастотную развязку, блок блокировки приема поступают на приемник, затем преобразуются в аналого-цифровом преобразователе (АЦП) в дискретные сигналы, фильтруются в первом цифровом фильтре для подавления паразитных составляющих в спектре принятого сигнала и в виде последовательности импульсов подаются в блок обработки канальных сигналов (БОКС) для обработки. При управлении с вычислителя по шине управления включается блокировка приемника, например, при симплексном обмене данными в канале, или отключается, если приемник используется в режиме оценки целостности передаваемого сообщения (режимы VDB, VDL-4). Приемник наземной станции обеспечивает прием сигнала в линиях передачи данных «воздух-земля». Демодуляция, декодирование, оценка качества сигнала и передача полученных сообщений в блоке обработки сообщений (БОС) осуществляется с помощью узлов: АЦП, первого цифрового фильтра, БОКС, управляемого вычислителем. Такие процедуры осуществляются непрерывно при наличии радиосигнала в канале. Для повышения качества оценки типа сообщения число дискретных отсчетов устанавливают, например, порядка 8 в течение длительности самого короткого символа из всех каналов. В АЦП во время этих отсчетов измеряется амплитуда сигнала. Результат измерения отправляется по шине управления в вычислитель для анализа. С помощью узлов: АЦП, первого цифрового фильтра, БОКС, управляемого вычислителем, в соответствии с необходимыми для данной ЛПД процедурами сигнал с выхода приемника преобразуется в цифровой вид, который необходим для дальнейшей обработки в БОКС и затем в вычислителе. Все логические операции выполняются программно в вычислителе. Затем цифровая последовательность обрабатывается в БОКС с использованием управляющих сигналов с вычислителя. По характерным признакам, например, по частоте следования импульсов в принятом сообщении, определяется тип бортового оборудования ЛПД ВС и выдается команда на подготовку к приему соответствующих данных. Далее в БОКС формируется строб, в течение которого начинают поступать счетные импульсы для обработки принятых сообщений. При совпадении поступающего в сообщении с ВС адреса и адреса, хранящегося во втором блоке хранения сообщений, увеличивается число подвижных объектов, записанных ранее, на единицу. Далее в БОКС формируется строб, в течение которого должны обрабатываться принятые сообщения. При наличии радиосигнала в канале определяется приоритет сообщения, необходимый, например, для изменения режимов функционирования БОКС и вычислителя.

В вычислителе постоянно определяется степень загрузки системы путем оценки числа обработанных сообщений за заданный интервал времени. Если загрузка отсутствует, то формируется команда о переходе приемника на сканирующий по частоте режим работы. Данные о числе принятых сообщений отображаются на экране блока отображения данных и при необходимости могут быть выведены на экран первого блока отображения данных в блоке обработки сообщений. Для координации работы всех узлов наземной станции используется шина управления вычислителя, которая подключена двухсторонними связями к соответствующим входам/выходам приемника, передатчика, блока блокировки приема, первого и второго цифровых фильтров, аналогово-цифрового преобразователя, цифро-аналогового преобразователя. Все операции выполняются с помощью вычислителя, реализованного, например, на ПЭВМ. Команда «Сброс» в наземной станции подается программно на БОКС с вычислителя, а в БОС - на генератор тактовых импульсов и блок преобразования форматов только в начале работы для установки в «Нуль» соответствующих блоков.

К недостаткам прототипа следует отнести:

- прототип рассчитан на работу только в ОВЧ диапазоне (в зоне прямой (оптической) видимости), что сужает его зону обслуживания до (350-400) км при высоте полета ВС 10 км и при отсутствии перекрытия зон связи соседних центральных станций на определенных высотах (эшелонах) воздушные суда остаются определенное время без управления со стороны центральных станций;

- оборудование прототипа не рассчитано на совместную работу с приемопередающими средствами ВЧ диапазона;

- отсутствует единая картина о воздушной обстановке в дальней и ближней зоне обслуживания воздушных судов.

Основной задачей, на решение которой направлено заявляемая полезная модель, является повышение информативности операторов центральной станции за счет совместной обработки информации линий передачи данных ОВЧ и ВЧ диапазонов.

Указанный технический результат достигается тем, что в центральную станцию системы радиосвязи с подвижными объектами, содержащую блок обработки сообщений (БОС), группу из 2 m модемов, основную и резервную наземные станции, каждая из которых содержит первый приемник, первый передатчик, (2m+1)-й модем, блок обработки канальных сигналов (БОКС), причем основная и резервная наземные станции подключены двухсторонними связями к БОС через (2m+2)-й и (2m+3)-й модемы соответственно, блок блокировки приема, выход которого подключен к входу первого приемника, первый вход/выход БОС последовательно соединен через (2m+2)-й с (2m+1)-м модемом, первые вычислители основной и резервной наземных станций соединены двухсторонними связями с соответствующими входами/выходами БОКС, входы/выходы вычислителей наземных станций через соответствующие модемы соединены с входами/выходами маршрутизатора, (2m+1)-го модема, второго пульта управления, второго блока отображения, второго блока хранения сообщений, аналогичного первого вычислителя, расположенного в резервной наземной станции, шина управления вычислителя двухсторонними связями подключена к соответствующим входам/выходам первого приемника, первого передатчика, блока блокировки приема, БОКС, первого и второго цифровых фильтров, первого аналогово-цифрового преобразователя, первого цифро-аналогового преобразователя, выход БОКС через последовательно соединенные первый цифро-аналоговый преобразователь, второй цифровой фильтр, первый передатчик, высокочастотную развязку подключен к антенне, которая в свою очередь через последовательно соединенные высокочастотную развязку, блок блокировки приема, первый приемник, первый аналогово-цифровой преобразователь, первый цифровой фильтр подключена к входу БОКС, вход/выход блока преобразования форматов является входом/выходом станции для потребителей информации, 2m входов/выходов БОС через 2m соответствующих модемов являются низкочастотными входами/выходами станций, начальная установка генератора тактовых импульсов и блока преобразования форматов в БОС осуществляется путем подачи на соответствующие входы сигнала «Сброс», m - суммарное число сопрягаемых наземных станций в зоне, в БОС блок преобразования форматов соединен двухсторонними связями с маршрутизатором, блоком хранения адресной базы, блоком тарификации, первым блоком хранения сообщений, первым блоком отображения, первым пультом управления, генератор тактовых импульсов подключен к синхровходам блока преобразования форматов, маршрутизатора, блока хранения адресной базы, блока тарификации, первого блока хранения сообщений, первого блока отображения, первого пульта управления, блок хранения адресной базы соединен двухсторонними связями с маршрутизатором и блоком тарификации, 2m входов/выходов маршрутизатора соединены с соответствующими входами/выходами 2m модемов, введены приемная станция ВЧ диапазона, вычислитель которой подключен двухсторонними связями к первому вычислителю основной наземной станции, передающая станция ВЧ диапазона, вычислитель которой подключен двухсторонними связями через последовательное соединенные (2m+4)-й и (2m+5)-й модемы к первому вычислителю основной наземной станции, приемная станция ВЧ диапазона состоит из последовательно соединенных двухсторонними связями вычислителя приемной станции ВЧ диапазона, третьего цифрового фильтра, второго аналогово-цифрового преобразователя, второго приемника, высокочастотный вход которого подключен к приемной антенне ВЧ диапазона, вход/выход управления вычислителя приемной станции ВЧ диапазона подключен двухсторонними связями к соответствующим входам/выходам третьего цифрового фильтра, второго аналогово-цифрового преобразователя, второго приемника, а передающая станция ВЧ диапазона состоит из последовательно соединенных двухсторонними связями вычислителя передающей станции ВЧ диапазона, второго цифро-аналогового преобразователя, четвертого цифрового фильтра, второго передатчика, высокочастотный выход которого подключен к передающей антенне ВЧ диапазона, вход/выход управления вычислителя передающей станции ВЧ диапазона подключен двухсторонними связями к соответствующим входам/выходам второго цифро-аналогового преобразователя, четвертого цифрового фильтра, второго передатчика.

На фигуре приведена структурная схема центральной станции системы радиосвязи с подвижными объектами и введены обозначения:

1 - приемник;

2 - блок обработки сообщений (БОС);

3 - передатчик;

4 - группа из 2m модемов;

5 - (2m+1)-й модем;

6 - (2m+2)-й модем;

7 - блок блокировки приема;

8 - вход/выход на m наземных станций;

9 - блок обработки канальных сигналов;

10 - блок преобразования форматов;

11 - маршрутизатор;

12 - блок хранения адресной базы;

13 - блок тарификации;

14 - первый блок хранения сообщений;

15 - первый блок отображения;

16 - первый пульт управления;

17 - генератор тактовых импульсов;

18 - основная наземная станция;

19 - резервная наземная станция;

20 - (2m+3)-й модем;

21 - первый вычислитель;

22 - М канальных блоков;

23 - 2-й пульт управления;

24 - 2-й блок отображения;

25 - 2-й блок хранения сообщений;

26 - шина управления вычислителя;

27 - 1-й цифровой фильтр;

28 - 2-й цифровой фильтр;

29 - первый аналого-цифровой преобразователь;

30 - первый цифро-аналоговый преобразователь;

31 - высокочастотная развязка;

32 - антенна;

33 - входы/выходы станции для потребителей информации;

34 - приемная станция ВЧ диапазона;

35 - передающая станция ВЧ диапазона;

36 - (2m+4)-й модем;

37 - вычислитель передающей станции ВЧ диапазона;

38 - второй цифро-аналоговый преобразователь;

39 - четвертый цифровой фильтр;

40 - второй передатчик;

41 - передающая антенна ВЧ диапазона;

42 - вход/выход управления вычислителя передающей станции ВЧ диапазона;

43 - приемная антенна ВЧ диапазона;

44 - второй приемник;

45 - второй аналогово-цифровой преобразователь;

46 - третий цифровой фильтр;

47 - вычислитель приемной станции ВЧ диапазона;

48 - вход/выход управления вычислителя приемной станции ВЧ диапазона;

49 - (2m+5)-й модем.

Центральная станция системы радиосвязи с подвижными объектами, к которым относятся и воздушные суда, одновременно работает в двух режимах: ближней и дальней связи. Для обслуживания ПО в ближней зоне (в пределах прямой видимости) используется оборудование ОВЧ диапазона, а в дальней зоне - передающая и приемная станции (35 и 34) ВЧ диапазона. Число центральных станций определяется количеством обслуживаемых ПО в заданных секторах и требуемой надежностью связи.

Работа предлагаемой центральной станции в ближней зоне не отличается от работы прототипа. В каждой наземной станции 18 (19) имеется М канальных блоков 22. Число каналов М в наземных станциях 18 и 19 определяется необходимостью одновременной работы с ВС в разных режимах и заданной интенсивностью движения в данной зоне обслуживания. Сформированные на ВС сообщения последовательно во времени через последовательно соединенные антенну 32, высокочастотную развязку 31, блок 7 блокировки приема поступают на первый приемник 1, затем преобразуются в первом АЦП 29 в дискретные сигналы, фильтруются в первом цифровом фильтре 27 для подавления паразитных составляющих в спектре принятого сигнала и в виде последовательности импульсов подаются в БОКС 9 для обработки. При управлении с первого вычислителя 21 по шине 26 управления блокировка первого приемника 1 может быть включена, например, при симплексном обмене данными в канале, или отключена, если приемник используется в режиме оценки целостности передаваемого сообщения (режимы VDB, VDL-4). Первый приемник 1 наземной станции 18 (19) обеспечивает прием сигнала в линиях передачи данных «воздух-земля» ОВЧ диапазона. Демодуляция, декодирование, оценка качества сигнала и передача полученных сообщений в БОС 2 осуществляется с помощью узлов: первого АЦП 29, первого цифрового 27 фильтра, БОКС 9, управляемого первым вычислителем 21. Такие процедуры осуществляются непрерывно при наличии радиосигнала в канале. Для повышения качества оценки типа сообщения число дискретных отсчетов устанавливают, например, порядка 8 в течение длительности самого короткого символа из всех каналов. В первом АЦП 29 во время этих отсчетов измеряется амплитуда принятого сигнала. Результат измерения отправляется по шине 26 управления в первый вычислитель 21 для анализа. С помощью узлов: первого АЦП 29, первого цифрового 27 фильтра, БОКС 9, управляемого первым вычислителем 21, в соответствии с необходимыми для данной ЛПД процедурами сигнал с выхода первого приемника 1 преобразуется в цифровой вид, который необходим для дальнейшей обработки в БОКС 9 и затем в первом вычислителе 21. Все логические операции выполняются программно в первом вычислителе 21. По характерным признакам, например, по рабочей частоте принятого радиосигнала или частоте следования импульсов в сообщении, определяется тип бортового оборудования линии передачи данных (ЛПД) воздушного судна и выдается команда узлам 9, 27, 29, 1, 7 по шине 26 на подготовку к приему соответствующих данных. Далее в БОКС 9 формируется строб, в течение которого начинают поступать счетные импульсы для обработки принятых сообщений. При совпадении поступающего в сообщении с ВС адреса с адресом, хранящимся во втором блоке 25 хранения сообщений, увеличивается число обслуживаемых станцией подвижных объектов, записанных ранее, на единицу. Далее в БОКС 9 формируется строб, в течение которого должны обрабатываться принятые сообщения. При наличии радиосигнала в канале определяется приоритет сообщения, необходимый, например, для изменения режимов функционирования БОКС 9 и первого вычислителя 21. Если за время (для каждого типа ЛПД свое) сообщение не принято или принято с ошибкой, т.е. подвижный объект не вышел на связь или вышел из зоны устойчивой радиосвязи, то полученное ранее число подвижных объектов уменьшается на единицу. Если за время вновь в канале обнаружится радиосигнал, то указанная выше процедура повторяется. При несовпадении адресов с заданными диспетчерами с пультов 16 и 23, заложенными в блоках 14 и 25 хранения сообщений или при наложении сообщений от нескольких ВС дальнейшая обработка сигналов в БОКС 9 не производится. В первом вычислителе 21 постоянно определяется степень загрузки радиоканалов путем оценки числа обработанных сообщений за заданный интервал времени. Если загрузка отсутствует, то формируется команда о переходе первого приемника 1 на сканирующий по частоте режим работы. Данные о числе принятых сообщений отображаются на экране второго блока 24 отображения данных и при необходимости могут быть выведены на экран первого блока 15 отображения данных в блоке 2 обработки сообщений. Для координации работы всех узлов наземной станции 18 (19) используется шина 26 управления первого вычислителя 21, которая подключена двухсторонними связями к соответствующим входам/выходам первого приемника 1, первого передатчика 3, блока 7 блокировки приема, первого и второго цифровых фильтров 27 и 28, первого аналогово-цифрового преобразователя 29, первого цифро-аналогового преобразователя 30. Все операции выполняются с помощью первого вычислителя 21, реализованного, например, на ПЭВМ. Команда «Сброс» в наземной станции 18 (19) подается программно на БОКС 9 с первого вычислителя 21, а в БОС 2 - c генератора 17 тактовых импульсов только в начале работы для установки в «Нуль» соответствующих блоков.

Операции модуляции и демодуляции выполняются в блоке 9 обработки канальных сигналов с использованием управляющих сигналов с первого вычислителя 21. После обработки сигналов в БОКС 9 в первом вычислителе 21 анализируется тип сообщений с ВС. Тип сообщения несет в себе информацию о его на значении, например, для воздушных судов: аварийные сигналы, сообщения автоматического зависимого наблюдения, данные обмена «пилот-диспетчер» и другие. В общем случае может быть несколько типов сообщений, которые разделяются по приоритетам.

В наземной станции 18 (19) формирование радиосигналов для передачи сообщений по каналу «воздух-земля» осуществляется в следующем порядке:

прием стандартного сообщения с первого вычислителя 21;

форматирование, кодирование, преобразование (скремблирование) битов сообщения в БОКС 9;

модуляция и фильтрация спектра сигналов, передача их на вход передатчика 3.

После идентификации принятых сообщений в блоке 9 канальной обработки сигналов, управляемом первым вычислителем 21, вырабатываются команды включения требуемой частоты первого передатчика 3 и сообщения, которые являются необходимыми для обозначения типа (номера) центральной станции системы радиосвязи с подвижными объектами, например, скваттерные посылки для воздушных судов гражданской авиации. При поступлении сообщения высшего приоритета с БОС 2 через модемы 6 и 5 в первый вычислитель 21 оно устанавливается первым в очередь на передачу на соответствующее воздушное судно. До тех пор, пока не переданы сообщения с высшим приоритетом, запрещается прохождение менее приоритетных сообщений. Менее срочные сообщения передаются на воздушное судно последовательно во времени в порядке их важности.

В память второго блока 25 хранения сообщений с помощью второго пульта 23 управления и первого вычислителя 21 заранее вводятся номиналы частот, виды модуляции, скорости передачи и другие параметры, характерные для каждого из радиоканалов, в том числе каналов ВЧ диапазона региона размещения наземных станций 18 и 19, блока 2 обработки сообщений центральной станции. Базы данных о ВС, параметрах сигналов в радиоканалах и другая информация хранится в первом и втором блоках 14 и 25 хранения сообщений, в которые может быть введена дополнительная информация с помощью пультов 16, 23 управления и первого вычислителя 21. Обновление информации осуществляется за счет непрерывного обмена сообщениями между вычислителями 21, 37, 47 и первым блоком 14 хранения сообщений как непосредственно, так и через модемы 49 и 36, а также через модемы 5 и 6, маршрутизатор 11, блок 10 преобразования форматов, вход/выход 33 станции с потребителями информации.

В режиме ближней связи сообщения с выхода первого вычислителя 21 через (2m+1)-й и (2m+2)-й модемы 5 и 6 поступают в БОС 2 через маршрутизатор 11 на блок 10 преобразования форматов, который может быть выполнен, например, на ПЭВМ. Если расстояние между первым вычислителем 21 и БОС 2 не превышают величин, заданных в требованиях на используемый интерфейс, то модемы 5 и 6 могут отсутствовать. В блоке 10 преобразования форматов принятые сообщения преобразуются к формату, необходимому для работы всех узлов БОС 2, наземных станций 18 и 19. Одновременно адреса сообщений сравниваются с данными блока 12 хранения адресной базы. По результатам сравнения выносится решение о трафике сообщения, задаваемом маршрутизатором 11, величине оплаты услуг в блоке 13 тарификации, записываются сообщения в первый блок 14 хранения сообщений, индицируются (при необходимости) на первом блоке 15 отображения. Таким образом, обеспечивается автоматический поиск воздушного судна для доставки ему сообщений и получения квитанций об их доставке. В первом блоке 14 хранения сообщений обеспечивается ведение архивов сообщений с учетом категории срочности. Для этого используется оперативная (на время «старения» информации) и долговременная память, например, на 30 суток. Данные оперативной памяти постоянно обновляются. Данные долговременной памяти необходимы для анализа конфликтных ситуаций и оценки правильности расчетов с получателями информации. Учет трафиков сообщений и соединений абонентов, расчет суммы за оплату услуг осуществляется в блоке 13 тарификации в зависимости от адреса абонента и объема сообщения. Счет получателю информации выставляется за переданный объем сообщений в заданный интервал времени, например, сутки, по трафику, определяемому блоком 12 хранения адресной базы и маршрутизатором 11. В блоке 12 хранения адресной базы заложены адреса и типы всех сообщений, обрабатываемых в центральной станции, а также адреса обслуживаемых ВС, сопрягаемых периферийных (соседних) станций системы радиосвязи с подвижными объектами и получателей информации. Маршрутизатор 11 обеспечивает распределение сообщений по воздушным и наземным сетям связи, а именно, подключение к центральной станции через соответствующие модемы 4 по шинам 8 наземных станций 18 (19) абонентов, например, для гражданской авиации (ГА): главный центр обработки информации, службы авиакомпаний и управления воздушным движением. Синхронизация всех процессов обработки сообщений во времени в БОС 2 осуществляется с помощью генератора 17 тактовых импульсов, который может быть выполнен с помощью меток точного времени с выхода приемника сигналов глобальных навигационных спутниковых систем. Начальная установка генератора тактовых импульсов и блока преобразования форматов в БОС 2 осуществляется путем подачи на соответствующие входы сигнала «Сброс», не показанные на фигуре. Запрос данных с воздушного судна осуществляется автоматически (программно) по входу/выходу 33 или с помощью первого пульта 16 управления БОС 2 или со второго пульта 23 управления наземной станции 18 (19). Запрос данных с ВС потребителем информации осуществляется с помощью сообщения одного из стандартных форматов, например, в соответствии с протоколом Х.25, переданного через вход/выход 33, блок 10 преобразования форматов, маршрутизатор 11 (или через соответствующий модем 4, маршрутизатор 11) на последовательно соединенные (2m+2)-й и (2m+1)-й модемы 6 и 5 на наземную станцию 18 (19) и через первый вычислитель 21, модемы 49 и 36 - на передающую станцию 35 ДКМВ диапазона.

На наземной станции 18 (19) с помощью узлов: БОКС 9, управляемого первым вычислителем 21, первого цифро-аналогового преобразователя 30, второго цифрового фильтра 28 в соответствии с необходимыми для данной ЛПД процедурами формируется сигнал для первого передатчика 3 с малым уровнем боковых лепестков спектра. Усиленный радиосигнал с выхода первого передатчика 3 через высокочастотную развязку 31, обеспечивающую защиту входных цепей первого приемника 1 от мощных радиосигналов первого передатчика 3, подается в антенну 32 и по эфиру поступает на ВС. Последняя операция осуществляется, например, при запросе данных с воздушных судов по признаку «последней связи». Второй пульт 23 управления выполняет функции формирования сообщений, передаваемых на ВС. Аналогичные сообщения по формату поступают через вход/выход 33. При автоматическом использовании наземной станции 18 (19) без обслуживающего персонала блоки 23, 24, 25 могут отсутствовать.

В первом вычислителе 21 осуществляется формирование, адресная коммутация и распределение сообщений по оборудованию ближней или дальней связи, циркулирующих между узлами наземной станции 18 (19), станций 34 и 35 или между БОС 2 и потребителями информации по входу/выходу 33. Сообщения с воздушных судов и квитанции об их правильном приеме поступают на первый и второй блоки 14 и 25 хранения сообщений, а сообщения для ВС - на блок 9 обработки канальных сигналов. Аналогичные указанным выше операции могут быть осуществлены в m других наземных станциях. Наблюдение за текущим состоянием узлов станции осуществляется в блоке 10 преобразования форматов, выполненного, например, на ПЭВМ, по квитанциям, поступающим с первого вычислителя 21 через соответствующие модемы 4, 6, 20. Структура полученной квитанции сравнивается с одной из заложенных в блоке 12 хранения адресной базы и после анализа соответствия выносится решение о работоспособности удаленного объекта. Поступающие данные с воздушного судна через один из М канальных блоков 22 наземной станции 18 (19), первый вычислитель 21, модемы 5 и 6, БОС 2 автоматически передаются адресатам, в качестве которых могут выступать, например, центры УВД, авиакомпании, различные службы ГА и другие объекты. Трафик данных, взаимодействующие с БОС 2 воздушные суда, состояние удаленных наземных станций 18 (19), станций 34, 35 ВЧ диапазона и модемов (каналов связи) отображаются на первом блоке 15 в режиме реального времени. Графический интерфейс предоставляет детальную информацию, а также дает оператору возможность запустить тестирование удаленного получателя информации, провести необходимые операции по установлению или отключению модема с каналом связи, вывести на экран статистические данные. Первый блок 14 хранения сообщений имеет накопители для хранения данных с возможностью резервирования, а также обеспечивает распечатку данных на внешнем принтере, не указанном на фигуре. Блок 10 преобразования форматов выполняет роль устройства информационно-логического сопряжения с входами/выходами 33 станции для подключения потребителей информации. Протокол логического уровня для каждого интерфейса - входа/выхода 33 станции для потребителей информации разрабатывается в соответствии со структурой передаваемой информации и требований к ее параметрам. В каждом пакете этих протоколов присутствует контрольная сумма, при несовпадении которой пакет игнорируется.

При интенсивном движении в зоне обслуживания ВС с разнообразной бортовой аппаратурой при полном использовании оборудования основного канала, при необходимости, для работы на частоте приема, не используемой в основной наземной станции 18 можно использовать канал из резервной наземной станции 19. При выходе из зоны обслуживания наземных станций ОВЧ диапазона сопровождение ВС осуществляется автоматически с помощью следящего за воздушной обстановкой первого вычислителя 21, «подключение» к соответствующему ВС станций 34 и 35 ВЧ диапазона, например, в соответствии с процедурой «хэн-дофф» [4, 5, 6]. Потребитель информации не замечает переход с одного диапазона частот на другой, только незначительно увеличивается время задержки ответного сообщения. Аналогичная процедура осуществляется при передаче обслуживания ВС с дальней зоны в зону обслуживания с помощью ОВЧ каналов радиосвязи.

При отсутствии в канале радиосигналов на основной и резервной частотах первый вычислитель 21 с помощью шины управления 26 осуществляет сканирование по частоте в первом приемнике 1 по другим известным фиксированным рабочим частотам каналов передачи данных «воздух-земля» для определения наличия в них информации. При необходимости сканирование по известным частотам осуществляется и в станциях 34 и 35 ВЧ диапазона. Подключение каждого из каналов обмена данными осуществляется на время, необходимое для анализа в нем сообщения. В наземной станции 18 (19) и в приемной станции 34 ВЧ диапазона осуществляется сканирование каналов, на которых воздушные суда ведут передачу сообщений в эфир. В первом приемнике 1 и в приемной станции 34 ВЧ диапазона используется алгоритм поиска излучения радиосигнала, как один из способов определения состояния канала (свободен или занят). Для обнаружения радиосигнала приемник осуществляет оценку нижнего порога уровня шума, основываясь на измерении мощности сигнала в канале независимо от обнаружения нужной обучающей последовательности. Наличие сигнала в канале характеризуется величиной мощности, зафиксированной в канале, превышающей оценку нижнего порога мощности шума. Для обнаружения на физическом уровне занятых каналов могут быть использованы, например, следующие процедуры:

- обнаружение обучающей последовательности: канал считается занятым, если обнаруживается обучающая последовательность, за которой следует флажок - метка кадра данных;

- измерение мощности на канале: независимо от способности наземной станции 18 (19) или приемной станции 34 ВЧ диапазона обнаружить значимую обучающую последовательность, канал считается занятым после возрастания мощности на канале до четырехкратного значения нижнего порога мощности шума в течение половины интервала времени, выделенного для оценки канала.

Частоты М приемников при сканировании изменяются синхронно по заранее известным для данного региона рабочим точкам, например, со сдвигом (В-М) позиций, где В - число возможных (в зоне обслуживания) режимов ЛПД. При обнаружении радиосигнала сканирование прекращается и начинается прием и обработка сообщения. В некоторых случаях канальный блок 22 может быть постоянно закреплен за определенной ЛПД, в которой осуществляется непрерывный обмен данными между абонентами центральной станции. В зоне обслуживания с высокой интенсивностью полетов ВС за каждой ЛПД может быть постоянно закреплен определенный канальный блок 22.

С помощью узлов наземной станции 18 (19) или станций 34 и 35 ВЧ диапазона в симплексном режиме обеспечиваются следующие функции физического уровня:

- управление рабочей частотой передатчика и приемника;

- прием данных приемником;

- передача данных передатчиком;

- услуги уведомления, включая измерение времени приема;

- прослушивание радиоканала.

Повышение достоверности передачи информации обеспечивается следующим образом. Если первый вычислитель 21 получает от БОКС 9 уведомление, что в данный момент времени на ВС было отправлено сообщение, а с воздушного судна соответствующая квитанция не была принята, и эта ситуация продолжается достаточно долго, то принимается решение о выходе из строя соответствующего элемента и с помощью двусторонних связей через узлы 10, 11, 6 (или 4, 20), 5 (или 36, 49) на первый вычислитель 21 наземных станций 18 или 19 передается соответствующее сообщение и инициируется переход на резервную наземную станцию 19 с выдачей информации о неисправности. Для обеспечения бесперебойной работы наземные станции 18 и 19 резервируются по принципу горячего резерва. Выход из строя одного элемента станции не нарушает ее работоспособности. За счет некоррелированности радиосигналов ВЧ и ОВЧ диапазонов повышается надежность связи, в том числе и за пределами радиогоризонта.

Принципы формирования и обработки сигналов в станциях 34 и 35 ВЧ диапазона аналогичны рассмотренным в станциях 18 (19) ОВЧ диапазона. Объединение данных, полученных с наземной станции 22 по радиоканалам ОВЧ диапазона и приемной станции 34 ВЧ диапазона, размещаемых территориально рядом, осуществляется в первом вычислителе 21. Для этого вычислитель 47 приемной станции 34 ВЧ диапазона подключен двухсторонними связями непосредственно к первому вычислителю 21 основной наземной станции 18, например, в соответствии с протоколом Ethernet. Для защиты от «пролезания» мощных радиосигналов на вход антенны 43 позицию, на которой размещена передающая станция 35 ВЧ диапазона, удаляют за пределы прямой видимости от приемной станции 34. Поэтому вычислитель 37 удаленной передающей станции 35 ВЧ диапазона подключают двухсторонними связями через последовательно соединенные (2m+4)-й 36 и (2m+5)-й 49 модемы и линию связи, не показанную на фигуре, как и другие линии, к первому вычислителю 21 основной наземной станции 18.

Приемная станция 34 ВЧ диапазона состоит из последовательно соединенных двухсторонними связями вычислителя 47 приемной станции ВЧ диапазона, третьего цифрового фильтра 46, второго аналогово-цифрового преобразователя 45, второго приемника 44, высокочастотный вход которого подключен к приемной антенне 43 ВЧ диапазона. Вход/выход управления 48 вычислителя 47 приемной станции 34 ВЧ диапазона подключен двухсторонними связями к соответствующим входам/выходам третьего цифрового фильтра 46, второго аналогово-цифрового преобразователя 45, второго приемника 44.

Передающая станция 35 ВЧ диапазона состоит из последовательно соединенных двухсторонними связями вычислителя 37 передающей станции 35 ВЧ диапазона, второго цифро-аналогового преобразователя 38, четвертого цифрового фильтра 39, второго передатчика 40, высокочастотный выход которого подключен к передающей антенне 41 ВЧ диапазона. Вход/выход управления 42 вычислителя 37 передающей станции 35 ВЧ диапазона подключен двухсторонними связями к соответствующим входам/выходам второго цифро-аналогового преобразователя 38, четвертого цифрового фильтра 39, второго передатчика 40.

При передаче данных в ВЧ диапазоне от наземных потребителей к конечным бортовым системам ПО пакетное сообщение, содержащее адрес получателя (адрес борта) и адрес отправителя, принимаемое по входу/выходу 33, обрабатывают в БОС 2 (узлы 10, 11, 12, 13, 14) и после упаковки в маршрутизаторе 11 его, например, в виде пакета ISO 8208, передают через модемы 6 и 5 на первый вычислитель 21 основной наземной станции 18, выполняющий функции канального уровня эталонной модели взаимодействия открытых систем (ЭМВОС). Затем сформированное сообщение передают в вычислитель 37 передающей станции 35 ВЧ диапазона, выполняющий функции физического уровня эталонной модели взаимодействия открытых систем, например, по аналогии с системой HFDL [4]:

- сверточное кодирование данных для прямой коррекции ошибок;

- перемежение данных для борьбы с пакетированием ошибок из-за замираний и импульсных помех;

- преобразование последовательности из трех или двух или одного бита в значения фазы сигнала поднесущей частоты;

- скремблирование данных для выравнивания спектра передаваемого сигнала;

- формирование ключевой синхронизирующей последовательности и преамбулы, содержащей известную последовательность для обучения адаптивного демодулятора, и информацию о скорости передачи данных и глубине перемежения;

- формирование коротких обучающих последовательностей, которые вставляют в поток передаваемых данных для реализации адаптивных методов приема сообщения.

Во втором цифро-аналоговом преобразователе 38 дискретные сообщения преобразуются в аналоговые, а в четвертом цифровом фильтре 39 осуществляются операции:

- формирование заданной формы огибающей каждого символа для обеспечения заданной спектральной маски излучаемого сигнала;

- формирование радиосигнала, например, с верхней боковой полосой с подавленной несущей с соответствующим классом излучения.

После операций синтеза частот, частотного преобразования, фильтрации, усиления до требуемого уровня мощности во втором передатчике 40 через передающую антенну 41 ВЧ диапазона радиосигналы излучаются в эфир.

Принимаемые радиосигналы с приемной антенны 43 ВЧ диапазона подают на второй приемник 44, обеспечивающий согласование с выходным сопротивлением антенны 43 и фильтрацию мешающих радиосигналов.

Второй аналогово-цифровой преобразователь 45, параметры которого обеспечивают требования по заданному динамическому диапазону и быстродействию, третий цифровой фильтр 46, вычислитель 47 приемной станции ВЧ диапазона, выполняют функции физического уровня, а именно: частотного преобразования, фильтрации, синтеза частот, демодуляции, дескремблирования, деперемежения, декодирования с прямой коррекцией ошибок. После проведения этих операций в первом вычислителе 21 основной наземной станции обеспечиваются протоколы выбора частот связи, составления линии связи, обмена данными уровня доступа к подсети «воздух-земля», отказоустойчивого режима работы и другие процедуры, осуществляются процедуры адаптивных методов передачи и приема сигналов, проверки на наличие не исправленных ранее ошибок. В случае отсутствия ошибок сообщение упаковывают в пакет ISO 8208 и через узлы 5, 6, 11, 10 выдают, например, по протоколу Х.25 по входу/выходу 33 потребителям информации и совместно с данными, принятыми по ОВЧ радиоканалам, на первый блок 15 отображения для создания полной картины о текущей воздушной обстановке. Аналогичная информация будет индицироваться и на втором блоке 24 отображения.

Каждая передающая станция 35 ВЧ диапазона может выходить на связь на нескольких рабочих частотах, известных всем участникам движения, которые распределяются между другими передающими станциями ВЧ диапазона. Списки выделенных частот меняются в зависимости от времени года, а рабочая частота для каждой станции 35 (34) из списка выделенных частот активизируется на каждый час или два часа времени суток. При движении воздушное судно выходит на связь, выбирая для связи ту станцию 35 (34), условия распространения радиоволн для связи с которой в данный момент времени являются оптимальными. Как только качество канала связи деградирует ниже допустимого уровня, на борту выбирают новую оптимальную рабочую частоту на основании анализа условий распространения радиоволн. Таким образом, обеспечивают высокую (порядка 0,999) надежность связи при обмене данными с ВС, находящимися от станции 35 (34) на расстояниях от нескольких сотен до (4-6) тысяч км.

Радиосвязь с ВС обеспечивается в автоматическом режиме без вмешательства оператора на выбранных частотах из списка частот, назначенного при планировании связи. Высший уровень конфигурируемости, реализуемый в оборудовании станций 18, 19, 34, 35 - это полностью гибкие виды модуляции, протоколы уровня линии, сети и пользовательские функции, возможность изменения ширины полосы сигнала и центральной частоты по программе в широких пределах [4, 6, 7]. Благодаря такому взаимодействию появляется возможность создания приемо-передающего центра управления воздушным движением, работающим в ВЧ и ОВЧ диапазонах.

Блоки и входы/выходы 1-33 по назначению и структуре одинаковые с прототипом. Они могут быть реализованы на известных серийных элементах и узлах. Введенные станции 34, 35 и входящие в них узлы: 37-41, 44-47 и вход/выход 48 могут быть реализованы на известных серийных устройствах: приемниках и передатчиках ДКМВ диапазона с антенной типа АШ-4, ПЭВМ «Багет-01» с дополнительными модулями соответственно, модемы 36 и 49 - на модемах УПС-420. Построение гибкоперестраиваемых и широкодиапазонных приемников и передатчиков известно, например, радиостанция M3TR (М3-multiband, multimode, multifunction) компании Rohde & Schwarz со сменой режима работы за счет загрузки соответствующего программного обеспечения [6, 8, 7].

Центральная станция системы радиосвязи с подвижными объектами имеет следующие преимущества:

- повышается надежность связи за счет одновременного обмена данными с воздушным судном в ОВЧ и ВЧ диапазонах;

- упрощается процедура сопровождения диспетчерами воздушных судов, находящихся за пределами прямой видимости и приближающихся к границам зоны связи ОВЧ диапазона;

- повышаются дальность, надежность, оперативность процедуры управления воздушным движением;

- предложенной структурой могут быть решены задачи перехода от разработок наземных комплексов связи, изменение характеристик которых определяется доработкой аппаратной части, к устройствам, легко модернизируемым на базе программного обеспечения при неизменной аппаратной части.

Достоинства заявляемой структуры очевидны:

- увеличивается срок службы - жизненный цикл оборудования в условиях непрерывного совершенствования протоколов обмена данными «воздух-земля»;

- сокращается число и номенклатура запасного имущества и принадлежностей из-за использования однотипных узлов в оборудовании;

- упрощается процесс эксплуатации - замена неисправного радиочастотного модуля осуществляется автоматически однотипным модулем для всех диапазонов с соответствующим введенным программным обеспечением;

- уменьшается стоимость модернизации оборудования за счет коррекции только программного обеспечения.

На момент подачи заявки разработаны: алгоритмы функционирования и фрагменты соответствующего программного обеспечения заявляемой центральной станции.

ЛИТЕРАТУРА:

1. Патент РФ 2195774 М.кл. Н04В 7/26, 2002.

2. Патент РФ 2245001 М.кл. Н04В 7/26, 2005.

3. Патент РФ 2308175 М.кл. Н04В 7/30, 2007 (прототип).

4. Б.И.Кузьмин «Сети и системы цифровой электросвязи», часть 1 «Концепция ИКАО CNS/ATM. Москва - Санкт-Петербург: - ОАО «НИИЭР», 1999. - 206 с.

5. В.В.Бочкарев, Г.А.Крыжановский, Н.Н.Сухих. Автоматизированное управление движением авиационного транспорта. М.: - Транспорт, 1999. 319 с.

6. А.В.Кейстович, Л.М.Вдовин. Требования к характеристикам многорежимной наземной станции для организации ОВЧ линий передачи данных «воздух-земля». / Сборник статей V Международной научно-технической конференции «Кибернетика и технологии XXI века». Воронеж. 2004. с.495-500/.

7. Программа SPEAKeasy. Международный симпозиум по современным технологиям радиосвязи. Научно-исследовательская лаборатория ROME ВВС США. //Internet/-2002 г.

8. Тактическое оборудование связи JTR предусматривает обеспечение нужд войск спец. назначения. // Internet, 26.02.2002.

Центральная станция системы радиосвязи с подвижными объектами, содержащая блок обработки сообщений (БОС), группу из 2m модемов, основную и резервную наземные станции, каждая из которых содержит первый приемник, первый передатчик, (2m+1)-й модем, блок обработки канальных сигналов (БОКС), причем основная и резервная наземные станции подключены двухсторонними связями к БОС через (2m+2)-й и (2m+3)-й модемы соответственно, блок блокировки приема, выход которого подключен к входу первого приемника, первый вход/выход БОС последовательно соединен через (2m+2)-й с (2m+1)-м модемом, первые вычислители основной и резервной наземных станций соединены двухсторонними связями с соответствующими входами/выходами БОКС, входы/выходы вычислителей наземных станций через соответствующие модемы соединены с входами/выходами маршрутизатора, (2m+1)-го модема, второго пульта управления, второго блока отображения, второго блока хранения сообщений, аналогичного первого вычислителя, расположенного в резервной наземной станции, шина управления вычислителя двухсторонними связями подключена к соответствующим входам/выходам первого приемника, первого передатчика, блока блокировки приема, БОКС, первого и второго цифровых фильтров, первого аналогово-цифрового преобразователя, первого цифроаналогового преобразователя, выход БОКС через последовательно соединенные первый цифроаналоговый преобразователь, второй цифровой фильтр, первый передатчик, высокочастотную развязку подключен к антенне, которая, в свою очередь, через последовательно соединенные высокочастотную развязку, блок блокировки приема, первый приемник, первый аналогово-цифровой преобразователь, первый цифровой фильтр подключена к входу БОКС, вход/выход блока преобразования форматов является входом/выходом станции для потребителей информации, 2m входов/выходов БОС через 2m соответствующих модемов являются низкочастотными входами/выходами станций, начальная установка генератора тактовых импульсов и блока преобразования форматов в БОС осуществляется путем подачи на соответствующие входы сигнала «Сброс», m - суммарное число сопрягаемых наземных станций в зоне, в БОС блок преобразования форматов соединен двухсторонними связями с маршрутизатором, блоком хранения адресной базы, блоком тарификации, первым блоком хранения сообщений, первым блоком отображения, первым пультом управления, генератор тактовых импульсов подключен к синхровходам блока преобразования форматов, маршрутизатора, блока хранения адресной базы, блока тарификации, первого блока хранения сообщений, первого блока отображения, первого пульта управления, блок хранения адресной базы соединен двухсторонними связями с маршрутизатором и блоком тарификации, 2m входов/выходов маршрутизатора соединены с соответствующими входами/выходами 2m модемов, отличающаяся тем, что в нее введены приемная станция ВЧ диапазона, вычислитель которой подключен двухсторонними связями к первому вычислителю основной наземной станции, передающая станция ВЧ диапазона, вычислитель которой подключен двухсторонними связями через последовательное соединенные (2m+4)-й и (2m+5)-й модемы к вычислителю основной наземной станции, приемная станция ВЧ диапазона состоит из последовательно соединенных двухсторонними связями вычислителя приемной станции ВЧ диапазона, третьего цифрового фильтра, второго аналогово-цифрового преобразователя, второго приемника, высокочастотный вход которого подключен к приемной антенне ВЧ диапазона, вход/выход управления вычислителя приемной станции ВЧ диапазона подключен двухсторонними связями к соответствующим входам/выходам третьего цифрового фильтра, второго аналогово-цифрового преобразователя, второго приемника, а передающая станция ВЧ диапазона состоит из последовательно соединенных двухсторонними связями вычислителя передающей станции ВЧ диапазона, второго цифроаналогового преобразователя, четвертого цифрового фильтра, второго передатчика, высокочастотный выход которого подключен к передающей антенне ВЧ диапазона, вход/выход управления вычислителя передающей станции ВЧ диапазона подключен двухсторонними связями к соответствующим входам/выходам второго цифроаналогового преобразователя, четвертого цифрового фильтра, второго передатчика.



 

Похожие патенты:

Тренажер // 77075

Изобретение относится к системам диспетчерского контроля и управления воздушным движением в ближней зоне аэропорта
Наверх