Стенд для комплексного контроля массогеометрических характеристик

 

Полезная модель относится к области динамических средств определения массовых и инерционных характеристик, а именно к балансировочным стендам с вертикальной осью вращения.

Стенд содержит систему измерительных преобразователей, размещенную на станине и базирующем устройстве, выполненным в виде соосных конических газостатических подшипников, установленных в корпусе, и соединенным упругой подвеской со станиной, причем упругая подвеска содержит упругие пластины, плоскую пружину, соединенную концами с базирующим устройством, а серединой с изделием, и торсион, выполненный с возможностью изменения жесткости, один конец которого консольно соединен со станиной, а другой с базирующим устройством, при этом со стороны базирующего устройства торсион установлен на блок подшипников, которые соединяются посредством упругих пластин со станиной. При этом торсион выполнен с переменным внешним диаметром, причем одним концом он закреплен на станине, а другим концом с увеличенным внешним диаметром соединен с базирующим устройством и установлен на блок подшипников. При этом в корпусе базирующего устройства соосно газовым подшипникам установлена турбина для разгона и торможения изделия. Также поставленная задача достигается тем, что базирующее устройство выполнено с возможностью регулирования параметров газостатических подшипников.

Технический результат заключается в возможности повышения производительности и точности измерений. 1 н.п., 3 з.п., 3 ил.

Полезная модель относится к области динамических средств определения массовых и инерционных характеристик, а именно к балансировочным стендам с вертикальной осью вращения.

Из уровня техники известен балансировочный стенд с вертикальной осью вращения (патент RU 2292533 С2 от 27.01.2007 МПК6 G01M 1/02), состоящий из станины, базирующего устройства в виде соосных конических газостатических подшипников, установленных в корпусе, упругой колебательной подвески, выполненной в виде упругих консольных пластин с массивным основанием и соединяющей базирующее устройство со станиной, силоизмерительных датчиков, установленных в подвесах. Стенд позволяет определять дисбаланс и момент дисбаланса роторов различной конфигурации.

Основным недостатком данного стенда является невозможность определения полного комплекса массогеометрических характеристик (9 массогеометрических характеристик, исключая массу изделия). Совмещение функции несущего элемента и элемента жесткости существенно снижает диапазон возможных частот и амплитуд колебания по степеням свободы, реализуемым упругой подвеской. Газоподводящая арматура к газостатическим подшипникам является присоединенной массой и дополнительной жесткостью, которые затруднительно правильно учитывать, что ведет к увеличению погрешности стенда.

Из уровня-техники известен стенд для динамической балансировки изделий (Тверской М.М. Автоматизированные стенды для контроля и расчета коррекции распределения масс летательных аппаратов: // журнал Динамика, прочность и износостойкость машин, выпуск 1, 1995 г., с.71-72), состоящий из станины, рамы, установленной на динамометрических опорах, прикрепленных к станине, базирующего устройства в виде соосных конических газостатических подшипников, установленных в корпусе, упругой колебательной подвески, выполненной в виде пластин, установленных в двух взаимно перпендикулярных плоскостях и соединяющих базирующее устройство с рамой, и торсиона, который одним концом жестко соединен со станиной, а другим может присоединяться к изделию. Упругая подвеска обеспечивает базирующему устройству три степени свободы. Стенд позволяет определять девять массогеометрических характеристик изделия.

Основным недостатком данного стенда является использование в упругой подвеске пластин, обеспечивающих вращательную и поступательную степени свободы базирующему устройству, что приводит к нелинейному закону изменения жесткости при вращательном движении и существенным трудностям в определении оси вращения, кроме того, совмещение функции несущего элемента и элемента жесткости существенно снижает диапазон возможных частот и амплитуд колебания по степеням свободы, реализуемым упругой подвеской. Газоподводящая арматура к газостатическим подшипникам является присоединенной массой и дополнительной жесткостью, которые весьма затруднительно правильно учесть, что ведет к увеличению погрешности стенда.

В качестве прототипа выбран стенд для комплексного определения моссогеометрических характеристик (Федоров В.Б. Контроль и коррекция массогеометрических характеристик летательных аппаратов: //текст лекций// часть 1// - Челябинск, Изд.-во ЮУрГУ, 2004 г. с.39-42), содержащий систему измерительных преобразователей, размещенную на станине и базирующем устройстве, выполненным в виде соосных конических газостатических подшипников, установленных в корпусе, и соединенным упругой подвеской со станиной. Упругая подвеска обеспечивает базирующему устройству две степени подвижности. Стенд позволяет определять девять массогеометрических характеристик изделий.

Основным недостатком данного стенда является наличие присоединенной массы в виде рамы, что ведет к увеличению погрешности измерения, а также, газо-подводящая арматура к газостатическим подшипникам является присоединенной массой и дополнительной жесткостью, которые затруднительно правильно учитывать, что ведет к увеличению погрешности стенда.

Задачей предлагаемого технического решения является создание автоматизированного стенда, обладающего высокой скоростью и точностью измерений, для определения полного комплекса массогеометрических характеристик роторов и осесимметричных баллистических летательных аппаратов, а также для калибровки систем управления и навигации баллистических летательных аппаратов.

Поставленная задача достигается тем, что в стенде для комплексного контроля массогеометрических характеристик, содержащем систему измерительных преобразователей, размещенную на станине и базирующем устройстве, выполненным в виде соосных конических газостатических подшипников, установленных в корпусе, и соединенным упругой подвеской со станиной, причем упругая подвеска содержит упругие пластины, плоскую пружину, соединенную концами с базирующим устройством, а серединой с изделием, и торсион, выполненный с возможностью изменения жесткости, один конец которого консольно соединен со станиной, а другой с базирующим устройством, при этом со стороны базирующего устройства торсион установлен на блок подшипников, которые соединяются посредством упругих пластин со станиной.

Также поставленная задача достигается тем, что торсион выполнен с переменным внешним диаметром, причем одним концом он закреплен на станине, а другим концом с увеличенным внешним диаметром соединен с базирующим устройством и установлен на блок подшипников, таким образом, что момент инерции сечения торсиона в области с увеличенным внешним диаметром на несколько порядков выше момента инерции сечения торсиона в его рабочей части.

Другой особенностью стенда является то, что в корпусе базирующего устройства соосно газовым подшипникам установлена турбина для разгона и торможения изделия.

Также поставленная задача достигается тем, что базирующее устройство выполнено с возможностью регулирования параметров газостатических подшипников.

Применение упругих пластин для соединения станины и блока подшипников, на которые устанавливается торсион, позволяет реализовать необходимую поступательную степень свободы базирующему устройству и получить по направлению данной степени свободы практически линейный закон изменения жесткости.

Применение в качестве базирующего устройства соосных конических газовых подшипников позволяет повысить точность и однозначность базирования изделия, обеспечить необходимую вращательную степень свободы изделию с минимальным трением, кроме того, применение конических газовых подшипников позволяет косвенным путем определить пространственное положение действительной аэродинамической оси изделия.

Применение в упругой подвеске торсиона позволяет реализовать необходимую вращательную степень свободы базирующему устройству, получить по направлению данной степени свободы практически линейный закон изменения жесткости, точно определить ось поворота, а также, подводить газ, питающий газовые подшипники, через полый торсион, что исключает наличие трудно учитываемых дополнительных массы и жесткости подводящей арматуры.

Размещение торсиона на блоке подшипников со стороны базирующего устройства позволяет свести к минимуму влияние изгиба торсиона на его крутильную жесткость, а применение газовых подшипников позволяет свести к минимуму потери на трение.

А увеличение внешнего диаметра торсиона в месте крепления к базирующему устройству и месте установки на блок подшипников, позволяет повысить несущую способность блока газостатических подшипников, за счет увеличения площади опорной поверхности, исключить влияние изгибных напряжений на крутильную жесткость торсиона.

Применение турбины разгона и торможения изделия, установленной в корпусе базирующего устройства, позволит повысить эффективность разгона и торможения изделия, устранить необходимость во внешних подключаемых устройствах разгона-торможения, использование которых приводит к возникновению «вредных» колебаний, по причине не соосности оси вращения изделия в подшипнике и оси вращения приводного вала устройства.

Полезная модель направлена на определения массогеометрических характеристик роторов различной конфигурации на докритических режимах, осесимметричных баллистических летательных аппаратов и осесимметричных баллистических летательных аппаратов с изменяемыми массогеометрическими характеристиками, а также на калибровку систему навигации и управления баллистических летательных аппаратов.

Сущность предлагаемого технического решения поясняется чертежами, где на фиг.1 изображен стенд с внешним разгонно-тормозящим устройство, на фиг.2 изображен стенд, где торсион выполнен с областью увеличенным внешним диаметром вместе установки на блок подшипников, на фиг.3 изображен стенд с турбиной разгона-торможения изделия, установленной в корпусе базирующего устройства, вместо внешнего устройства разгона-торможения.

Согласно заявляемому техническому решению стенд (фиг.1) содержит: станину (на чертежах не показано), систему измерительных преобразователей (на чертежах не показано), базирующее устройство 1 в виде соосных конических газостатических подшипников 2, установленных в корпусе 3, упругую подвеску, состоящую из блока упругих пластин 4, плоской пружины 5, которая выполнена с возможностью соединения концами с базирующим устройством 1, а серединой с изделием 6, и торсиона 7, который выполнен с возможностью изменения жесткости и одним концом консольно соединен со станиной, а другим с базирующим устройством 1. Со стороны базирующего устройства 1 второй торсион 7 установлен на блок подшипников 8, которые соединяются посредством упругих пластин 4 со станиной. Внешнее устройство разгона и торможения изделия 9 фиксируется за станину и может присоединятся к носку изделия 6.

На фиг.2 изображен стенд, где торсион 7 выполнен с областью 11 с увеличенным внешним диаметром вместе установки на блок подшипников 8.

На фиг.3 изображен стенд с турбиной 10 разгона-торможения изделия, установленной в корпусе базирующего устройства, вместо внешнего устройства разгона-торможения.

Технический результат достигается тем, что предлагаемый стенд позволяет осуществлять комплексный контроль девяти массогеометрических характеристик за один установ изделия в базирующее устройство 1. Изделие 6 помещается в базирующее устройство 1, затем в газостатические подшипники 2 подается газ под давлением и с расходом, необходимыми для «всплытия» изделия 6. Далее системой измерительных преобразователей регистрируются параметры движения изделия 6 на стенде в различных режимах. Стенд позволяет реализовать три режима измерения. В первом режиме производится определение момента инерции Jx1x1. В этом режиме подключена плоская пружина 5, изделие 6 отклоняется на определенный угол и совершает свободные колебания вокруг оси своего вращения в базирующем устройстве 1, производится регистрация амплитуды и периода колебаний изделия 6 по данной степени свободы, по полученным значениям автоматически вычисляется момент инерции. Таким образом, производится определение моментов инерции методом крутильных колебаний. Частота колебаний изделия порядка 3 Гц.

Во втором режиме производится измерение центральных моментов инерции Jx1y1, Jx1z1 и поперечных координат центра масс Z и Y. Это по сути балансировочный режим. Происходит движение изделия 6 по всем трем степеням свободы, вращение в базирующем устройстве 1 с угловой скоростью 3-4 об./сек., колебание вокруг оси торсиона 7 и колебание в горизонтальной плоскости на блоке упругих пластин 4. При этом происходит измерение амплитуды и периода колебаний и по полученным значениям автоматически вычисляются инерционные характеристики.

В третьем режиме производится определение осевых моментов инерции Jz1z1, Jy1y1 , Jy1z1 и координаты Х центра масс. Базирующее устройство 1 с изделием 6 поворачивается на определенный угол вокруг оси второго торсиона 7, затем отпускается и изделие 6 совместно с базирующим устройством 1 совершают свободные колебания. Регистрируются амплитуды и период колебаний. Затем изделие 6 поворачивается в базирующем устройстве 1 на 45 градусов и производится повторное измерение, затем производят еще одно измерение с поворотом изделия на 45 градусов. По полученным результатам автоматически вычисляются оставшиеся инерционные характеристики.

Таким образом, предлагаемое техническое решение - стенд комплексного определения массовых, центровочных и инерционных характеристик осесимметричных роторов позволяет повысить эффективность процесса балансировки и соответствует требованию промышленной применимости, так как может быть многократно воспроизведена и реализована на основе современных технологий с использованием высокой степени автоматизации процесса посредством компьютерной обработки результатов измерений и управления параметрами движения изделия на стенде. Конструкция экспериментально опробована в лабораториях кафедр «Автоматизация механосборочного производства» и «Двигатели летательных аппаратов» Южно-Уральского государственного университета (г.Челябинск).

1. Стенд комплексного контроля массогеометрических характеристик осесимметричных роторов, содержащий систему измерительных преобразователей, размещенную на станине и базирующем устройстве, выполненном в виде соосных конических газостатических подшипников, установленных в корпусе, и соединенном упругой подвеской со станиной, отличающийся тем, что упругая подвеска содержит упругие пластины, плоскую пружину, соединенную концами с базирующим устройством, а серединой с изделием, и торсион, выполненный с возможностью изменения жесткости, один конец которого консольно соединен со станиной, а другой с базирующим устройством, при этом со стороны базирующего устройства торсион установлен на блок подшипников, которые соединяются посредством упругих пластин со станиной.

2. Стенд по п.1, отличающийся тем, что торсион выполнен с переменным внешним диаметром, причем одним концом он закреплен на станине, а другим концом с увеличенным внешним диаметром соединен с базирующим устройством и установлен на блок подшипников.

3. Стенд по п.1, отличающийся тем, что в корпусе базирующего устройства соосно газовым подшипникам установлена турбина для разгона и торможения изделия.

4. Стенд по п.1, отличающийся тем, что базирующее устройство выполнено с возможностью регулирования параметров газостатических подшипников.



 

Похожие патенты:

Изобретение относится к электротехнике и касается литий-ионной аккумуляторной батареи (далее ЛИАБ) для космического аппарата

Камера сгорания газового котла используемая в теплофикационной газотурбинной установке относится к области энергетики, а точнее к теплофикационным газотурбинным установкам, применяемым для надстройки существующих водогрейных котлов подогревающих сетевую воду теплосети.
Наверх