Лазер с оптическим параметрическим генератором

 

Полезная модель относится к оптическому приборостроению, в частности к устройствам для параметрической генерации излучения, и может быть использовано для создания источников инфракрасного направленного излучения. Задачей полезной модели является повышение стабильности юстировки лазерного резонатора излучателя ЛОПГ. Сущность полезной модели заключается в том, что лазер с оптическим параметрическим генератором, включающий глухое зеркало и выходное зеркало, образующие лазерный резонатор, в котором установлены оптически связанные активный элемент, оптическое устройство для изменения направления оси лазерного резонатора, внутреннее зеркало, образующее с выходным зеркалом вторичный внутренний резонатор, в котором расположен нелинейный кристалл, содержит оптический компенсатор, расположенный между активным элементом и внутренним зеркалом и выполненный в виде двух оптических клиньев, установленных с возможностью поворота вокруг оси лазерного резонатора. 1 илл.

Полезная модель относится к оптическому приборостроению, в частности к устройствам для параметрической генерации излучения, и может быть использована для создания источников направленного излучения.

Известен лазер с оптическим параметрическим генератором (ЛОПГ) [1], включающий образованный глухим сферическим зеркалом и плоским выходным зеркалом лазерный резонатор, в котором установлены оптически связанные активный элемент, плоское внутреннее зеркало, образующее с выходным зеркалом вторичный внутренний резонатор, поляризатор, установленный между плоским внутренним и глухим сферическим зеркалами, кристалл КТР (титанила фосфата калия или KTiOPO4), имеющий плоскопараллельные рабочие грани и расположенный во вторичном внутреннем резонаторе, причем коэффициент отражения плоского выходного зеркала для выходного излучения оптического параметрического генератора находится в пределах от 0,1 до 0,8.

Такой ЛОПГ с расположением оптических элементов в одну линию позволяет получить максимальный КПД, однако имеет и максимальную длину.

Меньшую длину имеет ЛОПГ [2], являющийся наиболее близким по технической сущности и достигаемому результату и выбранный в качестве прототипа.

ЛОПГ включает глухое зеркало и выходное зеркало, образующие лазерный резонатор, в котором установлены оптически связанные активный элемент, оптическое устройство для изменения направления оси лазерного резонатора, внутреннее зеркало, образующее с выходным зеркалом вторичный внутренний резонатор, в котором расположен нелинейный кристалл, а также поляризатор, установленный между активным элементом и глухим зеркалами. Коэффициент отражения выходного зеркала для выходного излучения оптического параметрического генератора (ОПГ) находится в пределах от 0,4 до 0,8.

Однако наличие в резонаторе оптического устройства для изменения направления оси лазерного резонатора предъявляет повышенные требования к стабильности юстировки лазерного резонатора.

Задачей полезной модели является повышение стабильности юстировки лазерного резонатора излучателя ЛОПГ.

Сущность полезной модели заключается в том, что лазер с оптическим параметрическим генератором, включающий глухое зеркало и выходное зеркало, образующие лазерный резонатор, в котором установлены оптически связанные активный элемент, оптическое устройство для изменения направления оси лазерного резонатора, внутреннее зеркало, образующее с выходным зеркалом вторичный внутренний резонатор, в котором расположен нелинейный кристалл, в отличие от прототипа, содержит оптический компенсатор, расположенный между активным элементом и внутренним зеркалом и выполненный в виде двух оптических клиньев, установленных с возможностью поворота вокруг оси лазерного резонатора.

Наличие оптического компенсатора, расположенного между активным элементом и внутренним зеркалом и выполненного в виде двух оптических клиньев, установленных с возможностью поворота вокруг оси лазерного резонатора, позволяет повысить стабильность юстировки лазерного резонатора ЛОПГ.

Полезная модель поясняется рисунком.

На фигуре представлена схема ЛОПГ.

ЛОПГ включает глухое зеркало 1 и выходное зеркало 2, образующие лазерный резонатор, в котором установлены оптически связанные активный элемент 3, оптическое устройство 4 для изменения направления оси лазерного резонатора, внутреннее зеркало 5, образующее с выходным зеркалом 2 вторичный внутренний резонатор, в котором расположен нелинейный кристалл КТР 6, а также расположенные между активным элементом 3 и глухим зеркалом 1 поляризатор 7 и затвор 8.

ЛОПГ снабжен оптическим компенсатором 9, выполненным в виде двух оптических клиньев 10 и 11, оптически связанных с оптическими элементами резонатора лазера и установленных между активным элементом 3 и внутренним зеркалом 5 с возможностью поворота вокруг оси лазерного резонатора.

Глухое зеркало 1 имеет коэффициент отражения >0,99 для излучения лазера в области длин волн ~1,06 мкм.

Выходное зеркало 2 изготовлено из кварцевого стекла КИ или КУ и выполнено в виде плоского зеркала, являющегося глухим для излучения лазера с ~1,06 мкм (коэффициент отражения >0,99) и пропускающим выходное излучение ЛОПГ с ~1,58 мкм. Оно имеет коэффициент отражения =0,6 для выходного излучения ЛОПГ.

Активный элемент 3 (4×65 мм) изготовлен из иттрийалюминиевого граната с неодимом (ИАГ) и позволяет получить длину волны излучения лазера =1,064 мкм.

В качестве оптического устройства 4 для изменения направления оси лазерного резонатора использована призма БР-180. Указанное устройство 4 меняет направление оси лазерного резонатора на 180 градусов и установлено между активным элементом 3 и внутренним зеркалом 5.

Внутреннее зеркало 5 изготовлено из кварцевого стекла КИ или КУ, выполнено плоским и образует с выходным зеркалом 2 вторичный внутренний резонатор. Внутреннее зеркало 5 пропускает излучение лазера с длиной волны =1,064 мкм и отражает выходное излучение ЛОПГ в области длин волн ~1,58 мкм. Во вторичном внутреннем резонаторе установлен нелинейный кристалл 6, изготовленный из двухосного кристалла КТР, плоскопараллельные рабочие грани которого выполнены перпендикулярными главной оси Х индикатрисы показателей преломления кристалла КТР с точностью ±30'. Во вторичном внутреннем резонаторе ЛОПГ кристалл КТР 6 расположен так, что указанная ось Х направлена вдоль оптической оси резонатора, вдоль которой на кристалл КТР 6 направлено поляризованное излучение лазера с длиной волны =1,064 мкм, а главная ось Z индикатрисы показателей преломления кристалла КТР 6 направлена параллельно плоскопараллельным рабочим граням поляризатора 7.

Поляризатор 7 и затвор 8 установлены между активным элементом 3 и глухим зеркалом 1. Поляризатор 7 выполнен в виде тонкой прозрачной пластины из стекла К8 с плоскопараллельными рабочими гранями и расположен таким образом, что нормаль к плоскопараллельным рабочим граням его составляет с оптической осью лазерного резонатора угол, близкий к углу Брюстера. Электрооптический затвор 8 предназначен для модуляции добротности лазера.

Оптический компенсатор 9, оптически связанный с оптическими элементами резонатора лазера, выполнен в виде двух оптических клиньев 10 и 11, установленных между активным элементом 3 и внутренним зеркалом 5 с возможностью поворота вокруг оси лазерного резонатора.

Оптические клинья 10 и 11 изготовлены из стекла К8.

ЛОПГ работает следующим образом.

Юстировка резонатора производится поворотом оптических клиньев 10 и 11 вокруг оси лазерного резонатора до получения максимальной энергии генерации ЛОПГ.

В резонаторе лазера с активным элементом 3 из ИАГ, образованном глухими (для излучения в области длин волн =1,064 мкм) зеркалом 1 и выходным зеркалом 2 (которое является одновременно и выходным для излучения ОПГ с ~1,58 мкм) генерируется импульс поляризованного излучения с длиной волны =1,064 мкм и длительностью около 10 нс с расположением электрического вектора Е в плоскости падения излучения на плоскопараллельные рабочие грани поляризатора 7. Это излучение проходит вдоль оптической оси резонатора ЛОПГ через внутреннее зеркало 5 на нелинейный двухосный кристалл КТР 6. В нелинейном кристалле КТР 6 импульсное поляризованное излучение с длиной волны =1,064 мкм параметрически преобразовывается в излучение сигнальной волны с длиной волны в области 1,58 мкм и излучение холостой волны с длиной волны в области 3,3 мкм. Излучение сигнальной волны усиливается в резонаторе, составленном из выходного для излучения ЛОПГ и внутреннего зеркал 2 и 5, соответственно, с расположенным между ними кристаллом КТР 6, и выходит наружу через выходное для излучения ЛОПГ зеркало 2.

Наличие резонатора ОПГ внутри резонатора лазера накачки позволяет получить высокие плотности мощности накачки в области ОПГ, за счет чего повышается эффективность преобразования в излучение сигнальной волны. Кроме того, многократное отражение излучения сигнальной волны с длиной волны в области 1,58 мкм в резонаторе, составленном из выходного для излучения ОПГ и внутреннего зеркал 2 и 5, соответственно, также позволяет увеличить эффективность преобразования излучения с длиной волны =1,064 мкм в излучение с длиной волны в области 1,58 мкм.

При электрической энергии импульса накачки ЛОПГ, равной 7 Дж, энергия импульса излучения с длиной волны в области 1,58 мкм составляет до 25 мДж.

Таким образом, обеспечивается повышение стабильности юстировки лазерного резонатора ЛОПГ.

Источники информации.

1 Патент на ПМ BY 3871 от 13.03.07 г. МПК Н01S 3/00, G02F 1/00.

2 Патент на ПМ RU 23020 от 29.11.01 г., МПК Н01S 3/00. - Прототип.

Лазер с оптическим параметрическим генератором, включающий глухое зеркало и выходное зеркало, образующие лазерный резонатор, в котором установлены оптически связанные активный элемент, оптическое устройство для изменения направления оси лазерного резонатора, внутреннее зеркало, образующее с выходным зеркалом вторичный внутренний резонатор, в котором расположен нелинейный кристалл, отличающийся тем, что содержит оптический компенсатор, расположенный между активным элементом и внутренним зеркалом и выполненный в виде двух оптических клиньев, установленных с возможностью поворота вокруг оси лазерного резонатора.



 

Похожие патенты:

Полезная модель относится к лазерной технике, в частности к твердотельным импульсным лазерам

Полезная модель относится к области нелинейной фотоники, и может быть использована в отрасли лазерного приборостроения, лазерных технологий, оптических систем передачи и обработки информации, а также при создании разного рода оптических датчиков и устройств

Предлагаемое техническое решение относится к области лазерной техники, а именно к моноблочным кольцевым лазерам и может быть использовано при создании лазерных гироскопов.

Изобретение относится к лазерной технике, а именно - к конструкциям твердотельных лазеров с накачкой активного элемента лазерными диодами

Предлагаемый перестраиваемый микрополосковый резонатор СВЧ относится к области СВЧ микроэлектроники и предназначен для работы в составе фильтров СВЧ и генераторах СВЧ в качестве элемента с электрическим управлением резонансной частотой.
Наверх