Отвал горных пород техногенной россыпи

 

Отвал горных пород техногенной россыпи, включающий эфельный отвал сформированный в выработанном пространстве на плотике и галечный материал отсыпанный на поверхности эфельного отвала, отличается тем, что эфельный отвал сформирован непосредственно на плотике, по его периметру сформирован водоупорный барьер, например из глины, кроме того, на плотике размещен теплообменник, в виде труб, ориентированных вдоль продольной оси отвала, выполненных с возможностью подачи по ним воздуха, снабженных средствами его подвода и отвода, которые выполнены с возможностью подвода-отвода атмосферного воздуха с использованием силы ветра, кроме того, вдоль продольной оси отвала выполнены вертикальные контрольные скважины, снабженные обсадными трубами, кроме того, вершина отвала выполнена в виде площадки или желоба, ориентированного вдоль продольной оси отвала. Использование заявленного решения позволяет повысить эффективность извлечения золота при повторной разработке россыпных месторождений. При этом обеспечивается предварительная концентрация золотосодержащих фракций в приплотиковой зоне отвала, что позволяет минимизировать объемы промываемой горной массы. Кроме того, обеспечивается возможность сорбционного слияния золотых частиц вследствие использования высоких давлений в объеме илоотстойника, развиваемых при его заморозке, тем самым достигается их укрупнение, что обеспечивает достаточно эффективное извлечение. 3 илл.

Полезная модель относится к горнодобывающей промышленности и может быть использована при освоении запасов техногенных россыпей, формируемых при отработке целиковых россыпей золота.

При разработке техногенных образований принципиальное значение имеют технологические процессы, обеспечивающие предварительную подготовку горной массы к обогащению, оказывающие прямое влияние на повышение эффективности работы, как традиционных обогатительных аппаратов, так и нового оборудования.

Известен отвал горных пород техногенных россыпей, включающий эфельную и галечную массу отсыпанную выработанном пространстве в произвольном порядке (см. SU 1097797, Е21С 45/00, Е21С 41/00, 1984).

Недостатком этого технического решения является необходимость валовой выемки т.к. кондиционные и некондиционные материалы размещены хаотично, что резко снижает содержание полезных компонентов в промываемой горной массе, повышает технологические потери золота и делает повторную разработку техногенных россыпей, как правило, нерентабельной.

Известен также отвал горных пород техногенной россыпи, включающий эфельный отвал сформированный в выработанном пространстве на плотике и галечный материал отсыпанный на поверхности эфельного отвала (см. RU 2024753, Е21С 41/26, 1994).

Недостатком этого технического решения является низкая эффективность извлечения золота за счет того, что тонкое золото, составляющее зачастую существенную часть его запасов по россыпи очень тяжело извлекается, особенно при значительном варьировании параметров золотин (частиц золота), определяющих их гидравлическую крупность.

Задача на решение которой направлено заявленное решение выражается в повышении эффективности извлечения золота при повторной разработке россыпных месторождений.

Технический результат, получаемый при решении поставленной технической задачи выражается в обеспечении предварительной концентрации золотосодержащих фракций в приплотиковой зоне отвала, что позволяет минимизировать объемы промываемой горной массы. Кроме того, обеспечивается возможность сорбционного слияния золотых частиц вследствие использования высоких давлений в объеме илоотстойника, развиваемых при его заморозке,тем самым их укрупнение, что обеспечивает достаточно эффективное извлечение.

Для решения поставленной задачи отвал горных пород техногенной россыпи, включающий эфельный отвал сформированный в выработанном пространстве на плотике и галечный материал отсыпанный на поверхности эфельного отвала, отличается тем, что эфельный отвал сформирован непосредственно на плотике, по его периметру сформирован водоупорный барьер, например из глины, кроме того, на плотике размещен теплообменник, в виде труб, ориентированных вдоль продольной оси отвала, выполненных с возможностью подачи по ним воздуха, снабженных средствами его подвода и отвода, которые выполнены с возможностью подвода-отвода атмосферного воздуха с использованием силы ветра, кроме того, вдоль продольной оси отвала выполнены вертикальные контрольные скважины, снабженные обсадными трубами, кроме того, вершина отвала выполнена в виде площадки или желоба, ориентированного вдоль продольной оси отвала.

Сопоставительный анализ совокупности существенных признаков предлагаемого технического решения и совокупности существенных признаков прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом, совокупность признаков, характеризующих заявленную полезную модель, обеспечивает решение задачи полезной модели повышение эффективности извлечения золота при повторной разработке россыпных месторождений, что достигается за счет предварительной концентрации золотосодержащих фракций в приплотиковой зоне отвала (позволяющей минимизировать объемы промываемой горной массы), а также за счет обеспечения возможности сорбционного слияния золотых частиц (их укрупнения), что обеспечивает достаточно эффективное извлечение.

Заявленное техническое решение иллюстрируется чертежами где на фиг.1 показан поперечный разрез отвала; на фиг.2 - схематически показан продольный разрез отвала с системой охлаждения-обогрева илоотстойника; на фиг.3 показан характер распределение золота после 21 цикла «Проморозки-Протаивания».

Переработка техногенных отвалов может быть целесообразной при обеспечении высокой концентрации оставшихся мелкодисперсных фракций золота в нижнем слое эфельного отвала и в илоотстойнике. Основное количество золота в техногенной россыпи представлено мелким и весьма мелкими классами крупности (от 0,06 до 0,5 мм). Отмечается явная закономерность увеличения количества золота от верхней части техногенной россыпи к нижней, что свидетельствует о его переотложении при фильтрации отвалов поверхностными водами.

Осуществление миграционных процессов золотоносных включений в приплотиковую часть пласта может быть обеспечено фильтрацией отвала поверхностными и промывочными водами, а также, вследствие поверхностных напряжений в толще слоев отвала при периодической заморозке и оттаивании отвала.

При наличии в толще отвала горных пород техногенной россыпи фильтрационного потока может возникнуть несколько видов деформации структуры пород, способствующих процессам миграции ценных компонентов, песка и глины в придонную часть отвала и формированию в ней илоотстойника.

К таким деформациям относятся: суффозия, т.е. вынос или перемещение фильтрационным потоком наиболее мелких частиц горной массы. При наличии в грунтах растворимых солей возможна дополнительная химическая суффозия; контактный размыв, т.е. разрушение связных пород на контакте с более крупным материалом, обусловленное действием фильтрационного потока вдоль контактной поверхности; отслаивание, т.е. отрыв фильтрационным потоком частиц и агрегатов глинистых пород с фракцией галичной и эфельной массы. В результате суффозии происходит увеличение пористости горной породы при росте размеров пор, что создает предпосылки к миграционным процессам ценных компонентов, имеющих более высокую плотность. При контактном размыве и отслаивании ослабляются связи между верхним и нижним слоями горной массы, что облегчает принудительное смещение верхних слоев пород к нижним.

Характеристики фильтрационного потока определяются многими факторами, которые на практике могут изменяться в широких пределах. К ним относятся: пористость и фильтрационная способность горной массы, температура воды и пород, наличие или отсутствие водоупора и схема его расположения, глубина промерзания горной массы и скорость ее оттаивания.

Авторами заявки проведены экспериментальные исследования раздельного влияния безнапорных потоков воды и циклов «проморозки-протаивания» на формирование обогащенного пласта. Получены следующие данные: при воздействии на массив горной массы безнапорных потоков воды скорость миграции частиц золота в горизонтальной плоскости лежит в пределах от 0,95 до 1,6 мм/час, по вертикали - 0,47 мм/час; скорость миграции фракций золота в результате циклов «проморозки-протаивания» находится в пределах от 1,6 до 0,3 мм/сут. (для частиц золота размером 2,5 мм, для более мелких фракций скорость миграции увеличивается).

Факт миграции золотин под влиянием циклов проморозки-протаивания не вызывает сомнения. Изучением этих процессов занимались: Шило, Шумилов. 1969: Ванцевич и др., 1969; Решетников, 1970; Смеян, 1977. Наиболее детальные экспериментальные и натурные исследования этих процессов выполнил Ю.В.Шумилов и др. Также факт миграции золотин подтверждается экспериментами, проведенными ранее в ИГД ДВО РАН.

Авторами также установлена миграция мелких золотых фракций в горной массе, состоящей из мелкой песчаной и глинистой фракций при периодической заморозке и оттаивании горной золотоносной массы полностью затопленной водой. После проведения ряда циклов заморозки-оттаивания обработка горной породы слоями толщиной 2 см по высоте экспериментальной закладки показала, что значительная часть золотых фракций размерами до 0,25 мм мигрировала на всю глубину горной массы и достигла дна экспериментального сосуда.

Однако извлечение тонких золотых фракций даже предварительно сконцентрированных в нижних пластах отвала остается невысоким, вследствие сложности процессов извлечения.

Увеличение степени извлечения золота может быть осуществлено только после предварительного укрупнения золотых мелкодисперсных включений, обеспечиваемого слипанием их, в результате контакта и поверхностной диффузии, обусловленных высоким давлением в объеме, где они находятся. Известен способ сорбционного слияния золотых частиц, а также золота и графита с благородными металлами [см. Л.П.Плюскина, Т.В.Кузьмина, О.В.Авченко Экспериментальное моделирование сорбции золота на углеродистое вещество при 200-500°С, 1 кбар. Геохимия 2004 8, с.864-873.], в котором слипание мелких фракций осуществлено при давлении 1 кбар и температуре 200-300°С, что позволяет затем извлекать золотые частицы из несвязных материалов известными технологическими процессами. Однако, такой процесс укрупнения (слияния частиц) энергоемок и неприменим в реальных условиях.

Конструкция заявленного отвала обеспечивает реализацию способа укрупнения золотоносных фракций основанного на принципе повышения давления при глубоком замораживании приплотиковой части отвала, продновременном исключении деформации и расширения замораживаемого слоя.

В процессе льдообразования, при вариации температурных параметров от 0 до - 50°С, развиваются давления от 1,3·107 Па до 8,455·107 Па.

На чертежах показаны галечный отвал 1; эфельный отвал 2; илоотстойник 3; плотик 4, водонепроницаемый барьер 5, водоприемная площадка 6 отвала, вертикальный сборный коллектор торцовых труб 7, соединительные трубы 8, контрольная скважина 9, придонные воздушные трубы 10, боковые воздушные трубы 11, раздающий воздушный коллектор 12, сборный воздушный коллектор 13, напорные воздушные трубы 14, вытяжные трубы 15, приемный дефлектор флюгерного типа 16, вытяжной дефлектор 17, воздушные заслонки 18 и 19.

Заявленное устройство работает следующим образом.

Первичную отработку россыпного месторождения осуществляют известным образом с помощью известных средств, например с использованием драги предпочтительно до плотика 4.

В процессе первичной отработки россыпи на поверхности плотика 4 формируют отвал, при этом, в начале, в пределах площади предусмотренной для отсыпки отвала размещают (желательно, параллельно друг другу плети придонных воздушных труб 10, а также при необходимости боковые воздушные трубы 11. Далее на подготовленную таким образом площадку ведут отсыпку эфельного отвала 2. При достижении эфельным отвалом 2 заданной площади по его периметру создают водонепроницаемый барьер 5 из водонепроницаемого, например, глинистого материала (его высота определяется долей илисто эфельной фракции в материале россыпи - размер эфеля менее 2 мм; содержание этой фракции варьирует от 10 до 45% в материале россыпи), формируя илоотстойник 3. Таким образом, высота барьера 5 от плотика 4 составляет от 0,1, до 0,4 от высоты отвала (суммарной высоты эфельного и галечного отвала 1). При формировании водонепроницаемого барьера целесообразно дополнительно использовать водонепроницаемый пленочный материал (на чертежах не показан), например полиэтилен высокого давления.

Далее, на эфельный отвал 2 отсыпают галечный отвал 1. Затем вершину отвала (формируемую материалом галечного отвала 1) профилируют создавая площадку 6, предпочтительно вогнутую. Эта площадка 6 обеспечивает создание фильтрационного потока (сверху вниз) в теле отвала - вода подается из водного источника (на чертежах не показан) самотеком, а так же поступает как дождевые воды. Далее на этой площадке бурят и известным образом обсаживают стальными трубами контрольные скважины 9.

В процессе фильтрации излишки воды удаляются из нижней части эфельного слоя и из илоотстойника перетекая через верхнюю грань водонепроницаемого барьера 5, фильтруясь через слой галечника, и удаляется из отвала. Водонепроницаемая стенка 5 обеспечивает максимальное водонасыщение отвала в илоотстойнике 3

В данном устройстве используется двухстадийное замораживание отвала. В первую очередь, при закрытых воздушных заслонках 18 и 19 замораживают верхние слои отвала по высоте и периметру (т.е. промораживают объем отвала за исключением объема илоотстойника). Фронт промерзания движется к илоотстойнику 3, который будет воспринимать теплоту фазового перехода при замораживании влаги, обеспечивающую повышенную температуру в нем, в сравнении с эфельным вышерасположенным отвалом 2.

Илоотстойник 3 имеет теплообменную инфраструктуру в виде придонных воздушных труб 10, соединенных сборными воздушными коллекторами 12, 13 и боковых воздушных труб 11, соединенных вертикальными коллекторами 7, соединенных трубопроводами 8 с напорными 14 и вытяжными 15 трубопроводами.

Контроль промерзания основной массы отвала ведется через контрольные скважины 9 с периодическим взятием проб.

Вторая стадия замораживания отвала (илоотстойника 3) производится после глубокого промерзания вышерасположенной части отвала. При этом на напорных воздушных трубах 14 открываются заслонки 18; на вытяжных трубах 15, - заслонки 19.

На входе в напорные воздушные трубы 14 установлены поворотные приемные дефлекторы флюгерного типа 16, а на концах вытяжных труб 15 смонтированы вытяжные дефлекторы 17 известной конструкции.

Перепад давления на входных 16 и выходных 17 дефлекторах обеспечивает скоростной напор в трубной воздушной системе, и холодный наружный воздух поступает в придонные воздушные трубы 10 и боковые воздушные трубы 11, обеспечивая промерзание илоотстойника, который имеет форму линзы, ограниченной по периметру эфельным слоем с высоким влагосодержанием, замороженным на первой стадии, а сверху - замороженной массой эфельного слоя отвала.

Влажная ило-эфельная масса илоотстойника при замерзании имеет ограниченные возможности расширения и деформации, в силу выше указанных причин, что обеспечивает возникновение высоких давлений и поверхностных напряжений в нем.

Совместное воздействие давления и криогенных условий обеспечит увеличение дисперсности фракций золота за счет поверхностной диффузии металла при периодических циклах замораживания и оттаивания.

После проведения нескольких циклов «Проморозки-Протаивания» (желательно не менее 10-20) отвал готовят к отработке - удаляют обсадные трубы из скважин 9, удаляют средства охлаждения-разогрева илоотстойника (позиции 7-19), после чего бульдозером (или драглайном) удаляют верхнюю часть отвала. Ее нижнюю границу выявляют отбором проб из нескольких контрольных скважин 9 перед их демонтажем. Далее известным образом, с использованием известных технических средств, например, с помощью промприбора, перерабатывают материал, локализованный в объеме илоотстойника 5 и извлекают золотосодержащий компонент.

Отвал горных пород техногенной россыпи, включающий эфельный отвал, сформированный в выработанном пространстве на плотике, и галечный материал, отсыпанный на поверхности эфельного отвала, отличающийся тем, что эфельный отвал сформирован непосредственно на плотике, по его периметру сформирован водоупорный барьер, например, из глины, кроме того, на плотике размещен теплообменник в виде труб, ориентированных вдоль продольной оси отвала, выполненных с возможностью подачи по ним воздуха, снабженных средствами его подвода и отвода, которые выполнены с возможностью подвода-отвода атмосферного воздуха с использованием силы ветра, кроме того, вдоль продольной оси отвала выполнены вертикальные контрольные скважины, снабженные обсадными трубами, кроме того, вершина отвала выполнена в виде площадки или желоба, ориентированного вдоль продольной оси отвала.



 

Похожие патенты:

Грузонесущие полимерные трубы для скважин относятся к нефтегазовой отрасли и могут быть использованы для подъема продукции из скважин при их эксплуатации и освоении, т.е. в процессе добычи нефти, газа, газоконденсата или воды, а также проведении работ по ремонту и скважин и интенсификации притока.

Полезная модель относится к системам прогнозирования землетрясений на основе отслеживания геодинамических изменений земной коры геодезическим мониторингом
Наверх