Штамповая сталь

Изобретение относится к области черной металлургии, а именно к стали с регулируемым аустенитным превращением при эксплуатации, применяемой для штампов горячего прессования сплавов на основе меди при температурах 450-750°С. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,42-0,49, кремний 1,07-1,28, марганец 3,83-4,16, хром 1,55-1,89, никель 2,39-2,73, молибден 2,04-2,22, ниобий 0,12-0,18, титан 0,33-0,42, ванадий 0,55-0,71, железо остальное. Повышается степень деформационного упрочнения штамповой стали в процессе эксплуатации инструмента с одновременным сохранением высоких прочностных свойств в аустенитном состоянии при температуре 750°С, повышение стабильности переохлажденного аустенита и увеличение стойкости штампов. 2 табл., 1 пр.

 

Изобретение относится к черной металлургии, в частности к стали с регулируемым аустенитным превращением при эксплуатации (стали с РАПЭ), применяемой для штампов горячего прессования сплавов на основе меди. При прессовании многих сплавов на медной основе рабочая поверхность инструмента разогревается до 750°С, испытывая при этом значительные удельные давления.

В процессе прессования при смене прессуемых деталей штамп может охлаждаться до 450°С. В этих условиях сталь должна сохранять структуру наклепанного аустенита с целью обеспечения высокой стойкости инструмента.

Известна штамповал сталь для горячего прессования (Авторское свидетельство №604369. Штамповая сталь. Озерский А.Д. и др., 1977), содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, кобальт, цирконий, церий и железо.

Недостатком известной стали является повышенное содержание дорогостоящего никеля, низкая прочность при температуре 750°С и низкая склонность к деформационному упрочнению.

Известна штамповая сталь для горячего прессования (Авторское свидетельство №1440069. Штамповая сталь. Грабовский В.Я. и др., 1988), содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, железо.

Недостатком известной стали является повышенное содержание дорогостоящих никеля и молибдена, недостаточно высокая прочность при температуре 750°С и низкая склонность к деформационному упрочнению.

Известна штамповая сталь, принятая за прототип (Авторское свидетельство №1434798. Штамповая сталь. Озерский А.Д. и др., 1988), содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, железо, обладающая повышенной прочностью в аустенитном состоянии при температуре 750°С.

Недостатком известной стали является повышенное содержание дорогостоящих никеля и ванадия, а также низкая склонность к деформационному упрочнению, что не обеспечивает достаточной стойкости инструмента при температурах эксплуатации. 1 и 2 табл.

Задачей, на решение которой направлено настоящее изобретение, является повышение экономичности стали и увеличение стойкости инструмента, применяемого для штампов горячего прессования сплавов на основе меди при температурах 450-750°С.

Техническим результатом является увеличение степени деформационного упрочнения штамповой стали в процессе эксплуатации инструмента с одновременным сохранением высоких прочностных свойств в аустенитном состоянии при температуре 750°С и повышение стабильности переохлажденного аустенита.

Технический результат достигается за счет следующего.

Сталь, содержащая компоненты при следующем соотношении, мас.%: углерод 0,42-0,49; кремний 1,07-1,28; марганец 3,83-4,16; хром 1,55-1,89; никель 2,39-2,73; молибден 2,04-2,22; ниобий 0,12-0,18; титан 0,33-0,42; ванадий 0,55-0,71; железо остальное,

применяется в качестве стали для штампов горячего прессования сплавов на основе меди при температурах 450-750 °С.

Никель обеспечивает пониженную температуру α→γ превращения, необходимую для обеспечения аустенитной структуры стали при температуре прессования (750°С) и повышает устойчивость переохлажденного аустенита. В предлагаемой стали с целью повышения ее экономичности, а также повышания устойчивости переохлажденного аустенита никель частично заменен марганцем. Углерод, молибден и хром в указанных концентрациях обеспечивают наибольший эффект деформационного упрочнения аустенита при температуре 750°С.

Кремний обеспечивает увеличение скорости карбидообразования. Кремний влияет на повышение дисперсности выделяющихся в процессе эксплуатации карбидов, что способствует повышению прочности за счет карбидного упрочнения, наряду с деформационным и комплексным упрочнением. В процессе же длительного изотермического отжига кремний увеличивает скорость разупрочнения, что способствует снижению твердости и улучшению обрабатываемости сталей с РАПЭ.

Титан, ниобий и ванадий в указанных концентрациях обеспечивают формирование тугоплавких специальных карбидов и фаз Лавеса, которые способствуют повышению жаропрочности стали при длительном сроке работы инструмента.

Пример реализации предложенного подхода.

Сталь выплавляли в индукционной печи емкостью 160 кг и разливали в слитки массой 30 кг. Химический состав предлагаемой стали приведен в табл. 1.

Слитки расковывали на заготовки ∅14×500 мм, из которых изготавливали стандартные разрывные образцы типа 4 по ГОСТ 1497-73.

Механические свойства стали определяли при температуре 750°С по следующей методике. Стандартные разрывные образцы нагревали прямым пропусканием электрического тока в камере испытательной машины Gleeble 3800 в вакууме 10-4 мм.рт.ст. до температуры 1150°С в течение 15 мин, выдерживали 15 мин, охлаждали до температуры 750°С и после выдержки в течение 15 мин производили деформацию растяжением до разрушения образцов.

Средние значения механических свойств сталей, полученные по результатам испытания не менее трех образцов на точку, приведены в табл. 2.

В результате испытаний было установлено, что предлагаемая сталь в сравнении с известной сталью в аустенитном состоянии, принятой за прототип, обладает близким значением предела прочности, но существенно меньшим пределом текучести, что свидетельствует о большей степени упрочнения предлагаемой стали при температуре 750°С.

Стабильность переохлажденного аустенита определяли при построении термокинетической диаграммы с использованием высокоскоростного деформационного дилатометра DIL-805 A/D. Исследования проводились в диапазоне скоростей охлаждения от 0,2 до 10°С/мин с температуры 900°С на цилиндрических образцах диаметром 5 мм, длиной 10 мм.

В результате было установлено, что в предлагаемой стали распад аустенита по бейнитному механизму при 450°С происходит за 25 часов в сравнении с 5 часами для известной стали, что свидетельствует о его большей стабильности.

Ковка и механическая обработка предлагаемой стали не связаны с какими-либо дополнительными трудностями по сравнению с известной сталью.

В результате реализации изобретения повысится экономичность стали и увеличится стойкость штампового инструмента для горячего прессования сплавов на основе меди при температурах 450-750°С.

Применение стали, содержащей компоненты при следующем соотношении, мас.%:

углерод 0,42-0,49
кремний 1,07-1,28
марганец 3,83-4,16
хром 1,55-1,89
никель 2,39-2,73
молибден 2,04-2,22
ниобий 0,12-0,18
титан 0,33-0,42
ванадий 0,55-0,71
железо остальное

в качестве стали для штампов горячего прессования сплавов на основе меди при температурах 450-750°С.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к стали, имеющей следующий состав, мас.%: 10,0≤Ni≤24,5, 1,0≤Mo≤12,0, 1,0≤Со≤18,0, 14,0≤Мо+Со+Si+Mn+Cu+W+V+Nb+Zr+Y+Ta+Cr+C+Al+B+Ti+N≤29,0, 21,5≤Ni+Co+Mo≤47,5, следовые количества ≤Al≤4,0, следовые количества ≤Ti≤0,1, следовые количества ≤N≤0,010, следовые количества ≤Si≤4,0, следовые количества ≤Mn≤13,0, следовые количества ≤C≤0,03, следовые количества ≤S≤0,0020, следовые количества ≤Р≤0,005, следовые количества ≤В≤0,01, следовые количества ≤Н≤0,0005, следовые количества ≤О≤0,03, следовые количества ≤Cr≤5,0, следовые количества ≤Cu≤4,0, следовые количества ≤W≤6,0, следовые количества ≤Zr≤4,0, следовые количества ≤Ca≤0,1, следовые количества ≤Mg≤0,8, следовые количества ≤Nb≤4,0, следовые количества ≤V≤4,0, следовые количества ≤Ta≤4,0, следовые количества ≤Y≤4,0, Si+Mn≥0,13, остальное - железо и неизбежные примеси.

Изобретение относится к области металлургии, а именно к изготовлению стальной полосы из многофазной стали. Способ изготовления стальной полосы из многофазной стали с минимальной прочностью на разрыв 980 МПа в незакаленном состоянии, содержащей, вес.%: C ≥ 0,075 до ≤ 0,115, Si ≥ 0,400 до ≤ 0,500, Mn ≥ 1,900 до ≤ 2,350, Cr ≥ 0,250 до ≤ 0,400, Al ≥ 0,010 до ≤ 0,060, N ≥ 0,0020 до ≤ 0,0120, P ≤ 0,020, S ≤ 0,0020, Ti ≥ 0,005 до ≤ 0,060, Nb ≥ 0,005 до ≤ 0,060, V ≥ 0,005 до ≤ 0,020, B ≥ 0,0005 до ≤ 0,0010, Mo ≥ 0,200 до ≤ 0,300, Ca ≥ 0,0010 до ≤ 0,0060, Cu ≤ 0,050, Ni ≤ 0,050, Sn ≤ 0,040, H ≤ 0,0010, остальное - железо и примеси, включает изготовление предварительной прокаткой полосовой заготовки, выбор толщины сляба и определенной, но переменной толщины полосовой заготовки, горячую прокатку полосовой заготовки со степенью обжатия 72-87%, намотку горячекатаной полосы при температуре начала образования бейнита, холодную прокатку горячекатаной полосы с получением холоднокатаной полосы с требуемой конечной толщиной, нагревание холоднокатаной полосы при непрерывном отжиге до температуры 700-950°C, охлаждение отожженной стальной полосы.

Изобретение относится к области металлургии, а именно к горячекатаной толстолистовой стали, используемой для изготовления высокопрочных сварных труб для магистральных трубопроводов.

Группа изобретений относится к металлургии, а именно к способу изготовления оцинкованной и отожженной листовой стали, и может быть использовано в автомобильной промышленности.
Изобретение относится к области металлургии, а именно к инструментальной стали для инструментодержателей. Сталь состоит из, мас.%: C 0,07-0,13, Si 0,10-0,45, Mn 2,1-2,9, Cr 2,6-3,6, Ni 0,5-2,0, Mo 0,1-0,7, Al 0,001-0,06, S ≤ 0,003, при необходимости Cu ≤ 1, N 0,006-0,06, V 0,01-0,2, Co ≤ 8, W ≤ 1, Nb ≤ 0,05, Ti ≤ 0,05, Zr ≤ 0,05, Ta ≤ 0,05, B ≤ 0,01, Ca ≤ 0,01, Mg ≤ 0,01, РЗМ ≤ 0,2 и H ≤ 0,0005, остальное - Fe и примеси.

Изобретение относится к металлургии и может быть использовано для изготовления толстых листов для металлоконструкций ответственного назначения, применяемых в судостроении, топливно-энергетическом комплексе, тяжелом машиностроении, в том числе для конструкций, работающих при высоких (до 250°C) температурах.

Изобретение относится к области металлургии стали, в частности к процессу производства трубопроводного стального листа. Способ производства ультрамелкозернистой толстолистовой трубопроводной стали, включающий этапы, на которых: (I) обеспечивают листовую заготовку из стали, содержащую, вес.%: C: 0,040 до 0,070, Si: 0,15 до 0,30, Mn: 1,30 до 1,80, P: ≤ 0,015, S: ≤ 0,005, Nb: 0,030 до 0,07, Ti: 0,006 до 0,020, Ca: 0,0005 до 0,0040, Al: 0,015 до 0,050, Ni: 0,10 до 0,30, Cr: 0,10 до 0,30, Mo: 0,08 до 0,18 и Cu: 0,1 до 0,20, железо (Fe) и неизбежные примеси - остальное; (II) нагревают листовую заготовку из стали до температуры 1120-1140°С в течение 10,3-13 мин/см с последующим томлением при указанной температуре в течение 45 мин; (III) обеспечивают толщину листовой заготовки в 3,5-4,0 раза больше, чем у производимого листа, и проводят черновую прокатку со степенью обжатия последнего прохода 26%; (IV) проводят дополнительную прокатку со скоростью прокатки 1,3-1,5 м/с в течение 18-23 с получением ультрамелкозернистой толстолистовой трубопроводной стали шириной от 3500 мм до 5000 мм и толщиной от 25 мм до 40 мм; (V) проводят самоотпуск с температуры от 165°C до 190°C.

Сталь, характеризующаяся тем, что ее состав, мас. %, представляет собой: 10,0≤Ni≤24,5; 1,0≤Mo≤12,0; 1,0≤Со≤25,0; 20,0≤Мо+Со+Si+Mn+Cu+W+V+Nb+Zr+Ta+Cr+C≤29,0; Со+Мо≥20,0; Ni+Co+Mo≥29; следовые количества≤Al≤4,0; следовые количества≤Ti≤0,1; следовые количества≤N≤0,0050; следовые количества≤Si≤2,0; следовые количества≤Mn≤4,0; следовые количества≤C≤0,03; следовые количества≤S≤0,0020; следовые количества≤Р≤0,005; следовые количества≤В≤0,01; следовые количества≤Н≤0,0005; следовые количества≤О≤0,0025; следовые количества≤Cr≤5,0; следовые количества≤Cu≤2,0; следовые количества≤W≤4,0; следовые количества≤Zr≤4,0; следовые количества≤Ca≤0,1; следовые количества≤Mg≤0,1; следовые количества≤Nb≤4,0; следовые количества≤V≤4,0; следовые количества≤Ta≤4,0; остаток - железо и неизбежные примеси.

Изобретение относится к области металлургии, а именно к изготовлению стального листа с покрытием из цинка или цинкового сплава, используемого в автомобильной промышленности.
Изобретение относится к области металлургии, а именно к холоднокатаному и отожжённому стальному листу, используемому для изготовления деталей транспортных средств.
Наверх