Способ маркировки селитры

Изобретение относится к области маркировки гранул аммиачной селитры, выпускаемой для промышленных целей с целью ее последующей идентификации. Изобретение может быть использовано при маркировке селитры класса А с целью быстрой идентификации класса селитры и установки производителя, номера партии и даты производства продукта. Преимущество полученной маркирующей композиции и подхода заключается в простом и быстром смешении маркирующего порошка, содержащего маркирующий компонент на основе металлов, с уже готовыми гранулами аммиачной селитры в количестве 0,001-0,1 мас.% от массы гранул селитры. Благодаря пористой структуре гранул селитры маркирующий порошок, с размером частиц от 0,2 до 2 мкм, проникает в поры и задерживается в них. Композит может дополнительно содержать магнитную фазу на основе соединений железа (III), для идентификации взрывчатого вещества после взрыва. 4 з.п. ф-лы, 3 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области маркировки гранул аммиачной селитры, выпускаемой для промышленных целей с целью ее последующей идентификации.

Изобретение может быть использовано при маркировке селитры класса А с целью быстрой идентификации класса селитры и установки производителя, номера партии и даты производства продукта. Преимущество полученной маркирующей композиции и подхода заключается в простом и быстром смешении маркирующего порошка с уже готовыми гранулами аммиачной селитры в количестве не менее 0.001 масс. % от массы гранул селитры. Данный подход не требует внесения изменений в основной технологический процесс изготовления гранул селитры.

Уровень техники

В настоящее время все производители аммиачной селитры в зависимости от назначения выпускают селитру двух марок: А - для промышленности; Б - для сельского хозяйства.

Аммиачная селитра является окислителем и пожароопасна, поэтому, на все транспортные пакеты, сформированные из мешков с селитрой, перед предъявлением их к перевозке грузоотправителем наносят специальную транспортную маркировку содержащую кодовые обозначения страны изготовителя, производителя, номера партии и даты производства. Однако, визуально (без прочтения маркировки на пакете) отличить селитру марки А от марки Б практически невозможно.

Основной объем селитры, производимой для промышленности, используют для производства взрывчатых веществ (ВВ).

Для приготовления эмульсионных и простейших взрывчатых веществ применяют различные марки аммиачной селитры для технических целей: гранулированную высокоплотную аммиачную селитру, пористую аммиачную селитру с различными значениями маслопоглощения и насыпной плотности.

Ряд потребителей в производстве взрывчатых веществ одновременно используют различные марки аммиачной селитры. Однако по внешнему виду гранул марку аммиачной селитры определить невозможно, поэтому гранулированные продукты могут использоваться не по назначению.

Для маркировки взрывчатых веществ применяют различные по техническому существу способы маркировки.

В патентах RU 2533483 C1 и RU 2495860 C1 рассматривается способ маркировки ВВ, заключающийся во введении в состав ВВ маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке, при этом в качестве идентификаторов используют смесь полиорганосилоксанов с различными и отличными друг от друга длинами молекулярных цепочек, в которой каждому одному техническому показателю соответствует идентификатор в виде полиорганосилоксана с соответствующей длиной молекулярной цепочки, и соответствующим временем выхода («удерживания») на хроматограмме. Данный подход к маркировке не позволяет сформировать композит с селитрой, что делает невозможным визуальный контроль маркированной продукции гранул аммиачной селитры.

В патентах RU 2328481 C1 и RU 2368591 C1 описан способ нанесения масло-жирорастворимой маркирующей добавки путем её растворения в топливной фазе эмульсионного ВВ (ЭВВ). В качестве маркирующей добавки предлагается использовать синтетические органические или неорганические красители и/или низкомолекулярные полимеры из международного CAS-регистра химических веществ с молекулярной массой менее 1000 г/моль. Дополнительно, в маркирующую композицию могут быть добавлены люминофоры. При этом маркировка гранулированной аммиачной селитры таким способом возможна при изготовлении составов типа эмуланов (гранэмитов), представляющих собой смесь эмульсии и гранул аммиачной селитры. Необходимо отметить, что для маркировки селитры, необходимо присутствие неполярной жидкости, что делает невозможным применение данного способа для порошкового ВВ.

В патенте RU 2283823 C1 предложен способ маркировки ВВ с помощью тонкодисперсного порошка металлического сплава, содержащего лантаноиды, выбранные из группы: лантан, и/или самарий, и/или церий, и алюминий при соотношении массовых долей лантаноидов к алюминию (1·10-4-5·10-2). Компонентный состав применяемого для этих целей сплава соответствует определенному изготовителю ВВ, а массовое соотношение ряда компонентов-металлов этого сплава указывает на дату изготовления или другие технологические параметры либо на потребителя, в чей адрес планируется отгрузка готовой продукции. Для изготовления маркирующей добавки лантаноид (или лантаноиды) сплавляют с алюминием, после чего сплав измельчают до мелкозернистого порошка и смешивают его со взрывчатым веществом, которое тоже имеет вид мелкозернистого порошка, отношение размеров частиц которого к частицам исходной взрывчатки выбирают в пределах 0,8-1,3. Недостатком описанного способа является использование дополнительной стадии – измельчение сплава до необходимой фракции для последующего введения в состав ВВ.

В патенте RU 2637334 C2 предложен способ маркировки ВВ, позволяющий идентифицировать вещество после взрыва. Маркирующая добавка в виде частиц сферической формы, включает магнитный компонент, содержащий, по крайней мере, один компонент, выбранный из группы ферримагнитных оксидов железа, и/или ферритов со структурой шпинели или граната, или частиц металлического Ni, и маркирующий компонент, содержащий смесь солей в виде нитратов, ацетатов, хлоридов, формиатов или оксидов, включая твердые растворы на их основе, содержащий, по крайней мере, два элемента, выбранные из группы щелочноземельных элементов, лантаноидов, переходных металлов и постпереходных металлов, при следующем соотношении компонентов,

в мас. %:

магнитный компонент 2-98

маркирующий компонент 2-98

Маркирующий компонент содержит по меньшей мере один элемент, выбранный из группы: лантаноиды и, по крайней мере, один элемент, выбранный из группы: щелочноземельные элементы, лантаноиды, переходные металлы и постпереходные металлы.

В качестве лантаноидов применяют Се, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er.

В качестве переходных металлов применяют Ni, Со, Mn, V, Cu, Ag, Y, Zn.

В качестве постпереходных металлов применяют Sn, Bi, Sb.

В качестве щелочно-земельных элементов применяют Sr, Ва.

Маркирующую добавку можно добавлять во взрывчатые вещества в количестве 0,01-2 мас. % от общего количества смеси.

Для идентификации взрывчатого вещества после произошедшего взрыва при помощи магнита собирают грунт вокруг эпицентра взрыва с последующим диспергированием его в воде и улавливанием на магнит магнитной фракции. Нахождение и считывание маркера происходит с использованием растрового электронного микроскопа, оборудованного энергодисперсионным анализатором, который детектирует характеристическое рентгеновское излучение вещества, возникающее при облучении поверхности образца (маркирующих частиц) электронами с ускоряющим напряжением от 1-30 кВ. За счет облучения обнаруживаются частицы необходимой морфологии (сферы), изображение формируется во вторичных электронах. Пучок электронов взаимодействует с приповерхностным участком образца глубиной обычно менее нескольких микрон. После чего при помощи рентгеноспектрального микроанализа устанавливается элементный состав необходимого участка образца.

Общим недостатком описанных выше способов является невозможность визуального контроля маркированной продукции гранул аммиачной селитры при малых количествах вводимых маркеров, а также неравномерность окраски, что затрудняет контроль и может привести к ошибочным результатам.

Раскрытие сущности изобретения

Задача изобретения состоит в получении композита на основе маркирующей добавки и аммиачной селитры с целью упрощения идентификации селитры класса А, и повышения точности контроля.

Данная задача решается с помощью композита на основе аммиачной селитры, состоящего из гранул аммиачной селитры и порошка маркирующей добавки, содержащей маркирующий элемент на основе металлов, причем порошок маркирующей добавки составляет от 0,001 до 0,1 мас.% от массы гранул аммиачной селитры.

В качестве маркирующего элемента добавки композит содержит смесь по меньшей мере двух элементов, выбранных из щелочноземельных металлов, лантанидов, переходных металлов, постпереходных металлов, в виде нитратов, ацетатов, хлоридов, формиатов или оксидов.

В качестве лантанидов композит содержит Се, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, в качестве переходных металлов содержит Ni, Со, Mn, V, Cu, Ag, Y, Zn в качестве постпереходных металлов содержит Sn, Bi, Sb, в качестве щелочноземельных элементов содержит Sr, Ва.

При необходимости маркирующая добавка может содержать магнитную фазу на основе соединений железа (III) при следующем соотношении компонентов, масс. %:

маркирующий элемент на основе металлов 30- 40;

магнитная фаза 70-60.

В качестве магнитной фазы на основе соединений железа (III) композит содержит ферримагнитные оксиды железа и/или ферриты со структурой шпинели или граната.

Предпочтительно размер частиц маркирующей добавки составляет 0,2-2 мкм.

Композит формируется за счет включения порошка маркирующей добавки в поры гранул селитры. Содержание маркирующей добавки в композите варьируется от 0,001 до 0,1 мас. % от массы гранул селитры.

Создание композита на основе аммиачной селитры и маркирующей добавки позволяет создать однородное распределение маркирующих элементов на основе металлов и, при необходимости, магнитной фазы, в гранулах аммиачной селитры. Такой композит на основе аммиачной селитры и маркирующей добавки, содержащей в своём составе набор кодирующих элементов (маркирующие элементы), которые легко определить с помощью рентгеноспектрального микроанализа, для дальнейшего прочтения кода, позволяет легко определить страну изготовителя, производителя, номер партии и дату производства и легко визуально отличить селитру марки А от селитры марки Б, а также отличить разные продукты селитры марки А. Введение в добавку магнитной фазы позволяет упростить отбор магнитной фракции в случае, когда композит аммиачной селитры находится в виде россыпи и/или после взрыва ВВ.

Краткое описание чертежей

На фиг. 1 показана морфология гранул аммиачной селитры до получения композита (а) и после получения композита (в) и (с).

На фиг. 2 показан внешний вид композита (окраска) на основе аммиачной селитры и маркирующей добавки в зависимости от количества маркирующей добавки.

На фиг. 3 показана морфология композита аммиачной селитры и 0,05 мас.% маркирующей добавки и РСМА анализ этого композита.

Осуществление изобретения

Композит на основе гранул аммиачной селитры и маркирующей добавки формируют путем равномерного распределения гранул селитры и порошка маркера, взятого в массовом отношении от 0,001 до 0,1 мас.% от массы гранул селитры. Процесс осуществляют с использованием перемешивания в шейкере в течение нескольких минут. Благодаря пористой структуре аммиачной селитры, частицы маркера с размером от 0,2-2 мкм «застревают» внутри пор.

Состав и прочтение кода, маркированной селитры можно осуществить с использованием растрового электронного микроскопа с рентгеноспектральным микроанализом (РСМА). Как показано на фиг. 1 при получении композита аммиачной селитры и маркирующей добавки частицы маркера равномерно распределяются внутри пор гранул селитры.

Об образовании композита свидетельствует наличие окраски. Зависимость цвета маркированной селитры от количества введенной маркирующей добавки показана на фиг. 2.

Как следует из фиг. 1 для точного анализа достаточно содержание около 0,001 мас.% порошка маркера от массы гранул селитры. Использование менее 0,001 мас.% маркирующего порошка при маркировке гранул сильно снижают точность прочтения кода при использовании РСМА. Увеличение количества добавки упрощает считывание кода. Однако применение маркирующего порошка в количестве более 0,1 мас.% не целесообразно, т.к. увеличивает суммарную стоимость продукта.

Для образования композита частицы маркирующей добавки должны находиться внутри пор селитры. Соответственно, размер 0,2-2 мкм частиц маркирующей добавки определяется гранулометрическим составом аммиачной селитры, который должен соответствовать ГОСТ 2-2013 «Селитра аммиачная». Согласно требованиям указанного ГОСТ не менее 93 % гранул должны иметь размер от 1 до 3 мм.

При введении в состав маркирующей добавки магнитной фазы на основе соединений железа (III), соотношение компонентов должно составлять в мас. %:

маркирующий элемент на основе металлов 30-40;

магнитная фаза 70-60.

Как показали эксперименты, содержание менее 30 мас. % маркирующих элементов не целесообразно с точки зрения прочтения элементного анализа.

Если брать менее 40 мас.% магнитной фазы в маркирующей добавке, то суммарная намагниченность уменьшается и собирать частицы на магнит становиться затруднительным.

В качестве магнитной фазы на основе соединений железа (III) композит может содержать ферримагнитные оксиды железа и/или ферриты со структурой шпинели или граната.

Выбор указанных соединений обусловлен их магнитными свойствами и отсутствием влияния на точность прочтения кода при использовании РСМА.

Получение маркирующей добавки, а также способ анализа и принципы считывания кода подробно раскрыты в документе RU 2637334, который во всей своей полноте включен в настоящее описание.

Способ получения гранул аммиачной селитры не ограничен, однако продукт должен соответствовать ГОСТ 2-2013 «Селитра аммиачная».

Получение композита иллюстрируется следующими примерами.

Пример 1

Гранулы аммиачной селитры в количестве 1000 г помещают в смеситель. Туда добавляют 1 г маркирующей добавки, что соответствует 0,1 мас.% от массы гранул селитры, содержащей, в мас.%: Се(NO3)3-1, Pr(NO3)3-2, Nd(NO3)3-10, Sm(NO3)3-5, Eu(NO3)3-5, Gd(NO3)3-5, Tb(NO3)3-5, Dy(NO3)3-5, Ho(NO3)3-5, Er(NO3)3-5 Ni(HCOO)2-5, Со(NO3)2-5, Mn(NO3)2-5, VCl3-5, Cu(NO3)2-5, Ag(NO3)-5, Y(CH3COO)3-5, ZnCl2-5 Sn(HCOO)2-2, Bi(NO3)3-1, SbCl3-5 Ва(CH3COO)2-5. Размер частиц добавки составляет 0,2 мкм.

Перемешивают в течение 15 мин. На фиг. 1 показана морфология гранул аммиачной селитры до получения и после получения композита.

Пример 2

Осуществляют как пример 1, за исключением количества маркирующей добавки, которое составляет 10 мг или 0,001 мас.% массы гранул селитры.

Образцы композитов, полученных в примерах 1 и 2, помещают в электронный микроскоп с последующим проведением РСМА для установления элементного состава добавки маркера. В результате анализа определяется общий состав композита, включающий набор всех элементов, входящих в состав маркера.

Элемент Пример 1 Пример 2
Ce есть есть
Pr есть есть
Nd есть есть
Sm есть есть
Eu есть есть
Gd есть есть
Tb есть есть
Dy есть есть
Ho есть есть
Er есть есть
Ni есть есть
Co есть есть
Mn есть есть
V есть есть
Cu есть есть
Ag есть есть
Y есть есть
Zn есть есть
Sn есть есть
Bi есть есть
Sb есть есть
Ba есть Еесть

Пример 3

Гранулы аммиачной селитры в количестве 1000 г помещают в смеситель. Туда добавляют 10 мг маркирующей добавки, что соответствует 0,001 мас.% от массы гранул селитры, содержащей, содержащей 25 мас.% Nd2O3, 25 мас.% NiO, 25 мас.% Co3O4, 25 мас.% SrO. Размер частиц добавки составляет 0,2 мкм.

Перемешивают в течение 15 мин. На фиг. 1 показана морфология гранул аммиачной селитры до получения и после получения композита.

Пример 4

Гранулы аммиачной селитры в количестве 1000 г помещают в смеситель. Туда добавляют 1 г маркирующей добавки, что соответствует 0,1 мас.% от массы гранул селитры, содержащей 25 мас.% Nd2O3, 25 мас.% NiO, 25 мас.% Co3O4, 25 мас.% SrO. Размер частиц добавки составляет 1 мкм.

Перемешивают в течение 15 мин. На фиг. 1 показана морфология гранул аммиачной селитры до получения и после получения композита.

Образец композитов, полученных в примерах 3 и 4, помещают в электронный микроскоп с последующим проведением РСМА для установления элементного состава добавки маркера. В результате анализа определяется общий состав композита, включающий набор всех элементов, входящих в состав маркера.

элемент Nd Ni Y Co Sr Ba Gd Cu
пример 2 есть есть нет есть есть нет нет нет
пример 3 есть есть нет есть есть нет нет нет

Пример 5

Гранулы аммиачной селитры смешивают в течение 20 минут с помощью смесителя с 0,1 мас.% магнитного маркера содержащего 60мас. % магнитного компонента γ-Fe2O3 и 40% кодирующего компонента из 20мас.% Се2О3 и 20 мас.% Ag2O. В результате частицы маркеров «застревают» в пористой структуре гранул, образуя композит. Морфология полученного композита представлена на фиг. 1. Из фиг. 1 видно, что частицы маркера по существу равномерно распределены в гранулах селитры, на фиг. 2 показано, что композит имеет серый цвет.

Пример 6

Гранулы аммиачной селитры смешивают в течение 20 минут с помощью смесителя с 0,1 мас.% магнитного маркера содержащего 70мас. % магнитного компонента γ-Fe2O3 и 30% кодирующего компонента из 20мас.% Се2О3 и 10 мас.% Ag2O. Морфология полученного композита представлена на фиг. 1. Из фиг. 1 видно, что частицы маркера по существу равномерно распределены в гранулах селитры, на фиг. 2 показано, что композит имеет серый цвет.

Пример 7

Гранулы аммиачной селитры в количестве 1000 г смешивают при помощи смесителя в течение 16 мин с 0,50 г маркирующей добавки, что соответствует 0,05 мас.% маркера, содержащего в расчете на металлы 32,4 мас.% γ-Fe2O3 cо структурой шпинели (46,3мас.% в расчете на Fe2O3), 6,2 мас.% Y2O3, 28,34 мас.% Sr(CH3COO)2, 12,98 мас.% CeOx, 6,19 мас.% Ni(NO)3 и 13,89 мас.% Со3О4.

Морфология гранул с частицами гранул и РСМА (элементный анализ) представлены на фиг.3. В соответствии с созданной кодировкой и специально разработанным списком-реестром можно будет определить изготовителя, номер партии и дату изготовления продукции.

Таким образом, из примеров и фиг. ясно, что образование композита из гранул аммиачной селитры и порошка маркирующей добавки позволяет визуально (без прочтения маркировки на пакете) определить и отличить селитру марки А от марки Б, а также определить состав, производителя, номер партии и дату производства маркированной селитры с использованием растрового электронного микроскопа с рентгеноспектральным микроанализом (РСМА).

1. Композит на основе аммиачной селитры, состоящий из гранул аммиачной селитры и порошка маркирующей добавки, содержащей маркирующий компонент на основе смеси по меньшей мере двух металлов, выбранных из щелочноземельных металлов, лантанидов, переходных металлов, постпереходных металлов, в виде нитратов, ацетатов, хлоридов, формиатов или оксидов металлов, причем порошок маркирующей добавки составляет от 0,001 до 0,1 мас.% от массы гранул аммиачной селитры.

2. Композит по п. 1, который в качестве лантанидов содержит Се, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, в качестве переходных металлов содержит Ni, Со, Mn, V, Cu, Ag, Y, Zn в качестве постпереходных металлов содержит Sn, Bi, Sb, в качестве щелочноземельных элементов содержит Sr, Ва.

3. Композит по любому из пп. 1 или 2, который дополнительно содержит магнитную фазу на основе соединений железа (III) при следующем соотношении компонентов, мас.%:

маркирующий элемент на основе металлов 30-40;

магнитная фаза 70-60.

4. Композит по любому из пп. 1-3, который в качестве магнитной фазы на основе соединений железа (III) содержит ферримагнитные оксиды железа и/или ферриты со структурой шпинели или граната.

5. Композит по любому из пп. 1-4, в котором размер частиц маркирующей добавки составляет 0,2-2 мкм.



 

Похожие патенты:

Изобретение описывает способ определения совместимости и стабильности компонентов топливной смеси, включающий отбор проб компонентов топливной смеси, их перемешивание до гомогенного состояния, нагрев полученной смеси и последующую оценку совместимости компонентов, при этом перед перемешиванием проб компонентов топливной смеси определяют значение общего осадка каждой пробы и находят среднее значение общего осадка в пробах (Sср), при этом последующий нагрев смеси, полученной после перемешивания отобранных проб компонентов, производят до температуры от 95 до 105°С, при технологической выдержке от 23 часов 30 минут до 24 часов 30 минут, затем осуществляют повторное перемешивание смеси и ее фильтрацию, далее проводят подготовку фильтров и их сушку, затем рассчитывают значение массовой доли осадка в смеси (Sc) по формуле: , где - массовая доля осадка в смеси, мас.%, - масса верхнего фильтра после фильтрации, мг, - масса верхнего фильтра перед фильтрацией, мг, - масса нижнего фильтра после фильтрации, мг, - масса нижнего фильтра перед фильтрацией, мг, - масса образца, г, при этом выполняют два параллельных опыта и расчета по определению массовой доли осадка в смеси , после чего находят среднеарифметическое значение двух определений Х, затем рассчитывают индекс совместимости компонентов топливной смеси ИС по формуле , где – среднее значение общего осадка в отобранных пробах, мас.%, – повторяемость среднего значения общего осадка в отобранных пробах, если среднеарифметическое значение двух определений больше или равно индексу совместимости компонентов топливной смеси, то компоненты топливной смеси не совместимы, если среднеарифметическое значение двух определений меньше индексу совместимости компонентов топливной смеси, то компоненты топливной смеси совместимы и стабильны.
Изобретение относится к способу определения плотности темных и вязких нефтепродуктов. Способ включает подготовку пробы и подогрев ее в сушильном шкафу.

Изобретение относится к релаксометрии ЯМР и может быть использовано идентификации нефтепродуктов и экспресс-анализа их качества. Способ включает регистрацию сигналов затухания поперечной и продольной ядерной намагниченности протонов, определение распределений времен релаксации Т1 и Т2 посредством инверсии преобразования Лапласа, расчет вероятности совпадения этих распределений с эталонными распределениями, предварительно измеренными для сертифицированных нефтепродуктов.

Изобретение относится к cпособу контроля паров компонентов жидкого ракетного топлива в воздухе на основе полупроводниковых газочувствительных сенсоров, заключающемуся в том, что устанавливают для каждой примеси несимметричного диметилгидразина и тетраоксида азота соответствующую мощность нагрева газочувствительных сенсоров, через камеру с установленными аналитическими каналами с заданными мощностями нагрева пропускают определенный объем воздуха, измеряют напряжение на каждом сенсоре, обрабатывают результаты измеренных напряжений, определяют содержание паров компонентов жидких ракетных топлив в воздухе, характеризующемуся тем, что идентифицируют компоненты жидких ракетных топлив с помощью набора сенсоров в составе SnO2:Sb2O3:Ag, SnO2:Sb2O3:Ni, SnO2:Sb2O3:Fe и SnO2:Sb2O3:Zn, скомпонованных в мультисенсорную систему, управление которой осуществляется с помощью микропроцессора, нагревают сенсоры SnO2:Sb2O3:Ag, SnO2:Sb2O3:Zn, которые реагируют на наличие примеси тетраоксида азота в воздушном потоке, при подаче тока с мощностью 150 мВт, а сенсоры SnO2:Sb2O3:Ni, SnO2:Sb2O3:Fe, которые обнаруживают примеси несимметричного диметилгидразина при подаче тока с мощностью 350 мВт.

Изобретение относится к области измерительной техники и может быть использовано для регистрации режима взрывчатого превращения взрывчатых веществ (ВВ) (наличия или отсутствия детонационного режима взрывчатого превращения ВВ) и определения давления на фронте детонационной волны при взрыве относительно малой навески ВВ (0,2÷2 г) в результате его нагрева, например, при проведении научно-исследовательских работ.

Изобретение относится к области измерительной техники и может быть использовано для регистрации режима взрывчатого превращения взрывчатых веществ (ВВ) (наличия или отсутствия детонационного режима взрывчатого превращения ВВ) и определения давления на фронте детонационной волны при взрыве относительно малой навески ВВ (0,2÷2 г) в результате его нагрева, например, при проведении научно-исследовательских работ.

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам для обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей.

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам для обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей.

Изобретение относится к области измерительной техники и может быть использовано для для определения свойств газа путем корреляции. Изобретение относится к способу, в котором свойство (Q) газа определяют путем корреляции исходя из измерения количеств (μj) газовых смесей.

Изобретение относится к способу определения хлорорганических соединений в нефти, включающему промывание нефти, использование раствора бифенила натрия в толуоле, в котором в промытую фракцию нефти добавляют раствор бифенила натрия в толуоле, перемешивают, вносят полиметакрилатную матрицу с иммобилизованным комплексом дифенилкарбазона с ртутью (II), определяют количественное содержание хлорорганических соединений в исходной пробе по результатам измерений светопоглощения окрашенного комплекса при длине волны 550 нм, используя градуировочный график, или по визуальной оценке интенсивности окраски полимерной матрицы.

Группа изобретений относится к экспресс-анализу присадок, смазочных материалов, технических жидкостей, включая отработанные, для оценки фактического состояния двигателей внутреннего сгорания, трансмиссий, компрессоров и др.
Наверх