Тензопреобразователь давления мостового типа

Изобретение относится к измерительной технике и может быть применено при измерениях следующих физических величин: давления, ускорения, виброперемещений, тензонагрузок, действующих на элементы механизмов. Предлагаемый тензопреобразователь мостового типа, в котором за счет переключения тензорезисторов одного из полумостов полного тензомоста и синхронно с этим переключения двух регистров, в которых хранится информация о измерении в двух соседних полупериодах коммутации, исключается температурная погрешность и не требуется определение температуры моста. При коммутации тензорезисторов изменяется знак зависимости потенциала средней точки коммутируемого полумоста от изменения измеряемой величины. Знак этого потенциала не зависит от изменения температуры, это обстоятельство и используется для исключения температурной погрешности «ухода начального разбаланса» тензомоста. Тензомост входом подключен к источнику стабильного тока, а выходом - к дифференциальным входам инструментального усилителя, выходное напряжение усилителя преобразовывается в цифровую форму на АЦП, выходная информация АЦП хранится в двух переключаемых регистрах, информация которых сравнивается в вычислителе, при сравнении исключается температурная погрешность. АЦП с регистрами могут быть заменены на два аналоговых запоминающих устройства (АЗУ), входами подключенных к выходу инструментального усилителя, а выходы которых сравниваются на операционном усилителе. АЗУ коммутируются также синхронно с тензорезисторами полумоста. Техническим результатом при реализации заявленного решения является устранение необходимости в температурной градуировке тензомоста для устранения температурной погрешности «начального разбаланса». 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к измерительной технике и может быть применено при измерениях следующих физических величин: давления, ускорения, виброперемещений, тензонагрузок, действующих на элементы механизмов. Эти измерения должна объединять возможность применения полного тензомоста.

Полный тензомост имеет свойство, которое позволяет устранить температурные уходы «начального разбаланса». Это обусловлено тем, что функциональные зависимости потенциалов средних точек обоих полумостов от температуры имеют одинаковые знаки, а от измеряемой физической нагрузки разные знаки. Математически это формализуется следующими зависимостями:

Известные устройства, целью которых является устранение температурной погрешности «начального разбаланса» тензомоста при измерениях давления, содержат источник стабильного тока, который питает тензомост, а также схему термокоррекции, в которой используется указанное выше свойство тензомоста. При этом, схемы термокоррекции либо раздельно определяют изменения потенциалов ϕ1 и ϕ2, как это принято в Патенте №132539, либо суммируют и вычитают эти потенциалы с разными коэффициентами передач, как это реализовано в Патенте №2502970

Оба этих решения могут быть приняты за прототип предлагаемому устройству.

При раздельном измерении потенциалов средних точек полумостов в прототипе приходится рабочий мост дополнять эталонным резистивным мостом со стабильными резисторами и средние точки полумостов рабочего моста и эталонного вычитать и усиливать с помощью двух инструментальных усилителей. При этом на выходе одного инструментального усилителя получают сигнал Ul = K(ϕ1(t) + ϕ1(Р)), а на выходе другого усилителя U2 = K(ϕ2(Р) - ϕ2(Р)). Для этого полумосты эталонного моста настраиваются так, что их «начальные разбалансы» равны «начальным разбалансам» полумостов рабочего моста. Выходные напряжения инструментальных усилителей подключены через аналого-цифровые преобразователи к решающему блоку, в котором происходит суммирование и вычитание сигналов U1 и U2. Причем коэффициенты сумматора KΣ и вычитателя KΔ устанавливаются исходя из следующего соотношения:

, где kt1 и kt2 - температурные коэффициенты, определяющие температурные зависимости потенциалов средних точек полумостов рабочего моста. Остается в решающем блоке выполнить операцию сложения выходных сигналов сумматора и вычитателя, в результате которой получен сигнал не зависимый от температуры и несущий информацию только о измеряемом параметре.

Недостатком устройства по патенту №132539 является потеря свойства инструментального усилителя усиливать дифференциальный сигнал и ослаблять синфазную помеху дифференциальных датчиков, так как из-за раздельного измерения потенциалов средних точек полумостов рабочего моста, на входы инструментального усилителя подключаются потенциалы, имеющие не одинаковые помехи.

В устройстве по патенту №2502970 этот недостаток устранен за счет введения, кроме дифференциального измерительного канала, второго измерительного канала, в котором суммируются сигналы ϕ1 и ϕ2 с коэффициентом передачи KΣ. Однако, общим недостатком известных решений является необходимость выполнения не только градуировки рабочего тензомоста по физической измеряемой величине, но и градуировки по температуре и подстройки коэффициента KΣ под требуемое значение.

Целью предлагаемого устройства является устранение необходимости в температурной градуировке тензомоста для устранения температурной погрешности «начального разбаланса». Указанная цель, в тензопреобразователе давления мостового типа, содержащем полный тензомост, подключенный к источнику стабильного тока, выходные диагонали которого соединены с дифференциальными входами инструментального усилителя, подключенного ко входу аналоге-цифрового преобразователя, достигается включением между источником стабильного тока и полным тензомостом коммутатора, который коммутирует один из полумостов так, что в течении первого пол периода коммутации, тензорезистор верхнего плеча полумоста имеет отрицательное изменение сопротивления при увеличении нагрузки, а тензорезистор нижнего его плеча при этом имеет положительное изменение сопротивления, во втором периоде наоборот. При этом выход аналого-цифрового преобразователя коммутируется, синхронно с коммутацией полумоста, к двум регистрам. На первом регистре при этом хранится информация о температурной ошибке, а на втором регистре информация о физической величине с температурной ошибкой. Остается лишь обработать сигналы с обоих регистров, что и осуществит, соединенный с ними решающий блок.

Для описания работы предложенного устройства на рисунках 1 и 2 приведены его принципиальные схемы. На схеме 1 обозначены: полумосты 1 и 2 полного тензомоста, коммутатор 3, источник стабильного тока 4, инструментальный усилитель 5, аналого-цифровой преобразователь 6, который соединен со входами двух регистров 7, распределитель импульсов 8 и решающий блок 9. На схеме 2 10-АЗУ, 11 - дифференциальный операционный усилитель

Устройство работает по следующему алгоритму:

- в первом полупериоде резистор R3 включен в верхнее плечо полумоста, а резистор R4 включен в нижнее его плечо. При этом изменение потенциалов ϕ1(Р) и ϕ2(Р) имеют разные знаки при изменении измеряемой величины. Эти потенциалы подключены к дифференциальным входам инструментального усилителя и поэтому, кроме усиления, они суммируются. Выход инструментального усилителя при этом соединен с АЦП, который подключен к двум регистрам. Регистры коммутируются синхронно с тензорезисторами полумоста. На первом регистре хранится сигнал UR1 = ϕ1(Р) + ϕ2(Р) + ε, где ε = ϕ1(t) - ϕ2(t) + ϕ01 - ϕ02. Во втором полупериоде коммутатор 3 подключает тензорезистор R3 в нижнее плечо, R4 а в верхнее. При этом потенциалы ϕ1(Р) и ϕ2(Р) имеют одинаковые знаки при изменении измеряемой величины. На выходе инструментального усилителя эти потенциалы будут вычитаться. Информация с выхода инструментального усилителя при этом подключится ко второму регистру, на котором будет храниться сигнал UR2 = ϕ1(Р) - ϕ2(Р) + ε. Если в решающем блоке выполнить операцию вычитания UR1 - UR2 = 2ϕ2(Р), то ошибка, вызванная температурой и начальным разбалансом, обратится в 0. Если потребителю требуется сигнал о измеряемой величине в аналоговой форме, то АЦП с регистрами заменяется на два аналоговых запоминающих устройства (АЗУ) 10, которые через коммутатор 3 подключаются к выходу инструментального усилителя 5. Выходы АЗУ сравниваются на операционном усилителе 11, выход которого и несет информацию о измеряемой величине, температурная погрешность которой сводится к 0. На схемах 1 и 2 коммутатор изображен условно в виде трех ключей, которые управляются распределителем импульсов 8

За счет введения коммутатора исключена необходимость градуировки тензомоста по температуре. При этом, поскольку оба потенциала моста подключаются к одному инструментальному усилителю, то при усилении ослабляется синфазная составляющая помехи. В сравнении со вторым прототипом исключается сумматор потенциалов моста, к которому предъявляются жесткие требования по точности. Как в первом прототипе, так и во втором должны применяться прецизионные резисторы из которых строится эталонный мост в прототипе по патенту №132539 и на которых строится сумматор прототипа по Патенту №2502970. Общими признаками предлагаемого технического решения и рассмотренных вариантов тензопреобразователей являются:

- наличие в схеме полного тензомоста,

- питание тензомоста стабильным током

- подключение моста к инструментальному усилителю,

- преобразование аналогового сигнала с выхода усилителя в цифровую форму с помощью АЦП,

- обработка в вычислителе полученной информации с целью исключения ошибки, вызванной температурной погрешностью.

Отличительными признаками являются:

- введение в схему преобразователя коммутатора, который переключает плечи одного из полумостов тензомоста, изменяя знак зависимости потенциала средней точки этого полумоста от изменения измеряемой величины,

- введение двух регистров, на которых хранится информация с выхода АЦП, коммутируемых синхронно с коммутацией плеч полумоста или введение двух АЗУ

Благодаря наличию указанных отличительных признаков в совокупности с известными, указанными в ограничительной части формул, достигается исключение ошибки, вызванной изменением температуры тензомоста. При этом исключается необходимость в градуировке тензопреобразователя по температуре.

В результате поиска по источникам патентной и научно-технической информации совокупность признаков, которые характеризуют предлагаемый тензопреобразователь, не была обнаружена. Таким образом, предлагаемое решение удовлетворяет критерию охраноспособности «новое».

Между совокупностью признаков и выполняемых ими функций и достигаемых целей отсутствует очевидная причинно-следственная связь, техническое решение не следует явным образом из уровня техники. Критерий охраноспособности «изобретательский уровень» очевиден.

1. Тензопреобразователь давления мостового типа, содержащий полный тензомост, который подключен входом к источнику стабильного тока и выходом к дифференциальным входам инструментального усилителя, выход которого соединен со входом аналого-цифрового преобразователя (АЦП), информация с которого обрабатывается в вычислителе, отличающийся тем, что в преобразователь введен коммутатор, который переключает плечи одного из полумостов тензомоста так, что при этом изменяется знак зависимости потенциала его средней точки от изменения измеряемой величины и при этом синхронно коммутируются два введенных вновь регистра, подключенных к выходу АЦП, а выходы регистров соединены с решающим блоком, выполняющим функцию вычитания данных с этих выходов так, что на выходе решающего блока получают сигнал вида: U=UR1-UR2=2ϕ2 (Р), который не зависит от температуры, URl - сигнал на выходе первого регистра, UR2 - сигнал на выходе второго регистра, ϕ2 (Р) - потенциал средней точки коммутируемого полумоста, зависимый только от изменения измеряемой величины.

2. Тензопреобразователь давления мостового типа по п. 1, отличающийся тем, что в схему введены вместо АЦП и регистров два аналоговых запоминающих устройства (АЗУ), подключенных к выходу инструментального усилителя через коммутатор, который коммутируется синхронно с коммутацией тензорезисторов силового тензомоста, а выходы АЗУ сравниваются на введенном вновь операционном усилителе, выход которого является выходом преобразователя.



 

Похожие патенты:

Изобретение относится к измерительным приборам в области микросистемной техники. Датчик давления содержит корпус, чувствительный элемент, мембрана которого расположена на опорном кристалле, в котором выполнено сквозное отверстие и гермокомпенсационные элементы.

Изобретение относится к области измерительной техники и промышленной электроники и служит для измерения давлений на поверхности изделий дренажным методом. Предлагаемый преобразователь давления многоканальный содержит блок из 32 (возможно другое количество) кремниевых датчиков давления, блок пассивной компенсации температурной погрешности и начального разбаланса датчиков давления, мультиплексор сигналов измерительных элементов, блок управления мультиплексором от микроконтроллера, измерительный усилитель, аналого-цифровой преобразователь, микроконтроллер, термостабилизатор преобразователя, включающий датчик температуры, управляемые нагревательные элементы, равномерно распределенные по всей площади теплопроводящей рамки, ПИ-регулятор температуры, формирователь напряжений питания элементов преобразователя.

Изобретение относится к области измерительной техники и промышленной электроники и служит для измерения давлений на поверхности изделий дренажным методом. Предлагаемый преобразователь давления многоканальный содержит блок из 32 (возможно другое количество) кремниевых датчиков давления, блок пассивной компенсации температурной погрешности и начального разбаланса датчиков давления, мультиплексор сигналов измерительных элементов, блок управления мультиплексором от микроконтроллера, измерительный усилитель, аналого-цифровой преобразователь, микроконтроллер, термостабилизатор преобразователя, включающий датчик температуры, управляемые нагревательные элементы, равномерно распределенные по всей площади теплопроводящей рамки, ПИ-регулятор температуры, формирователь напряжений питания элементов преобразователя.

Изобретение относится к электронной технике, в частности к технологии изготовления тензорезисторных преобразователей давления. В интеллектуальный преобразователь введен узел, отвечающий за динамическую коррекцию установочных параметров на основе измеряемого преобразователем давления.

Использование: для контроля и (или) измерения давления жидкостей и газов. Сущность изобретения заключается в том, что интегральный преобразователь давления содержит кремниевый кристалл n-типа проводимости с плоской рабочей поверхностью и тонкой квадратной мембраной в центре кристалла с обратной стороны, на рабочей поверхности кристалла сформированы радиальные тензорезисторы р-типа проводимости, соединенные с помощью металлической электрической разводки в мостовую схему, на поверхности мембраны с обратной стороны кристалла методом анизотропного травления сформирован квадратный жесткий центр, по периметру мембраны и жесткого центра с рабочей стороны кристалла выполнены одинаковые по форме и размерам тензорезисторы, соединенные попарно, образуя четыре полумоста, с возможностью выбора идентичных рабочих тензорезисторов для настройки температурных уходов выходного сигнала, на рабочей поверхности кристалла вне зоны мембраны выполнены гальванически развязанные три группы сопротивлений из последовательно соединенных резисторов, с возможностью выборки номинала сопротивления для настройки выходных сигналов, четыре последовательно соединенные терморезистора расположены на одинаковом расстоянии друг от друга по периметру рабочей поверхности кристалла.

Изобретение предназначено для применения в океанологии и может использоваться в других областях. Сущность изобретения заключается в том, что используют распределенные термопрофилемеры, содержащие по n модулированных по погонной чувствительности по функциям {<p, (z)}, проводников.

Использование: для создания датчика давления с тонкопленочной нано- и микроэлектромеханической системой. Сущность изобретения заключается в том, что датчик давления с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС) содержит корпус, установленную в нем НиМЭМС, состоящую из упругого элемента - круглой мембраны, выполненной за одно целое с периферийным основанием, сформированной на ней гетерогенной структуры из тонких пленок материалов, в которой образованы включенные соответственно в противоположные плечи измерительного моста воспринимающие деформацию разного знака от измеряемого давления тензорезисторы, выполненные в виде соединенных тонкопленочными перемычками одинакового количества имеющих одинаковую форму тензоэлементов, расположенных по окружности на периферии мембраны, измерительные и питающие электрические цепи, соединяющие тонкопленочную НиМЭМС с выходом датчика, закрепленную и размещенную внутри периферийного основания с зазором относительно мембраны и периферийного основания в области, прилегающей к мембране, цилиндрическую втулку с цилиндрическим отверстием вдоль ее оси, в отверстии цилиндрической втулки размещен винт с наружным диаметром, обеспечивающим плотное закрепление винта во втулке с образованием винтового канала для измеряемой среды, ограниченного внутренней поверхностью цилиндрической втулки и наружной поверхностью винта, выполненной в виде однозаходной трапецеидальной резьбы с шагом, определяемым по определенному соотношению.

Изобретение относится к измерительной технике и может быть использовано в рабочих системах, имеющих баки, жидкое или газообразное рабочее тело (РТ), рабочие магистрали и исполнительный рабочий орган.

Изобретение относится к техническим устройствам для измерения давления в пластичных и сыпучих средах, в т.ч. грунтах.

Изобретение относится к нефтедобывающей промышленности и предназначено для одновременного измерения давления вне и внутри НКТ и может быть использовано для установки на оборудовании нефтяных скважин с целью получения информации для систем регулирования добычи продукции на нефтяных месторождениях страны.
Наверх