Способ переработки вакуумного газойля

Изобретение относится к области нефтепереработки и нефтехимии, в частности к переработке вакуумных газойлей. Может быть использовано в нефтеперерабатывающей промышленности для получения бензиновой и дизельной фракций с низким содержанием серы без существенных потерь вследствие газо- и коксообразования. Способ переработки вакуумного газойля включает предварительное окисление газойля смесью пероксида водорода и муравьиной кислоты при мольном соотношении Н2О2:НСООН = 3:4, So:H2O2 = 1:5 и последующий крекинг в реакторе-автоклаве, отличается тем, что окисленный продукт разделяют на полярные и неполярные компоненты, крекинг которых проводят раздельно с различной продолжительностью процесса при температуре 450-500°С. Техническим результатом предлагаемого способа является получение продукта, характеризующегося высоким содержанием дистиллятных фракций (порядка 70% масс.) при одновременно малом газо- и коксообразовании. При этом полиароматические соединения серы за счет предварительной окислительной модификации разрушаются с образованием менее термостойких производных тиофена. 1 табл., 8 пр.

 

Изобретение относится к области нефтепереработки и нефтехимии, в частности, к переработке вакуумных газойлей. Может быть использовано в нефтеперерабатывающей промышленности для получения бензиновой и дизельной фракций с низким содержанием серы без существенных потерь вследствие газо- и коксообразования.

В настоящее время в промышленности при переработке вакуумных дистиллятов наибольшее распространение получили гидрокаталитические процессы - гидроочистка и гидрокрекинг. Применение данных методов позволяет значительно сократить содержание гетероорганических соединений в полученных продуктах, увеличить выход бензиновой и дизельной фракций. Главный недостаток гидрокаталитических процессов заключается в необходимости поддержания высоких давления и температуры в реакторах, что обуславливает высокие эксплуатационные расходы и снижение технико-экономических показателей работы заводов, на которых их применяют.

В работе [Н. Behbehani and М.K. Andari, Petrol. Sci. Technol. 18, 51-61 (2000)] методом газожидкостной хроматографии с использованием хемилюминесцентного сероселективного детектора было показано, что серосодержащие соединения вакуумного газойля представлены, преимущественно, дибензотиофеном (ДБТ), бензонафтотиофеном и их алкильными производными. Применение гидрокаталитических процессов позволяет успешно удалить из сырья только тиолы, сульфиды и тиофены, тогда как вышеперечисленные сернистые соединения, а также их производные, из-за стерических затруднений в реакции гидрообессеривания вступают лишь частично.

В окислительных процессах реакционноспособность полиароматических сернистых соединений выше, чем у тиофена (Т) и бензотиофена (БТ), в противоположность их устойчивости в процессе гидрообессеривания. Полученные при окислении производные - сульфоны и сульфоксиды - характеризуются большей полярностью, что позволяет легко выделить их из смеси с углеводородами методами экстракции либо адсорбции. Кроме того, при окислении атома серы связь C-S становится менее прочной и легче разрушается при крекинге. Комбинирование предварительной окислительной модификации с последующей термообработкой представляет особый практический интерес, поскольку позволит одновременно эффективно удалять полиароматические сернистые соединения тяжелого углеводородного сырья и одновременно получать дополнительные количества важных для промышленности дистиллятных фракций.

Известен способ обессеривания сырой нефти пероксидом водорода с выделением продуктов окисления (RU 2677462 С1, МПК: C10G 27/04, C10G 27/12, C10G 17/02, C10G 53/14; Акопян А.В., Поликарпова П.Д., Федоров Р.А., Тараканова А.В. и др.; опубликовано: 17.01.2019). Способ описывает окисление сырой нефти каталитической композицией, включающей пероксид водорода не менее 20% мае. и органическую или минеральную кислоту, имеющую рКа - 3-4,76 и не разлагающую пероксид водорода. Недостатком способа является экстракционное удаление окисленных серосодержащих соединений диметилформамидом, т.к. данный растворитель не является селективным.

Описан вариант переработки тяжелых нефтяных остатков, включающий предобработку сырья воздухом при температуре 50-250°С, давлении 0,5-1 МПа и последующий термокрекинг при температуре 300-450°С, давлении 0,1-5 МПа и объемной скорости 0,5-2 ч-1. При этом выход светлых фракций составляет 70-75% мас. (RU 2184761 С1, МПК: C10G 9/00, C10G 55/04; Демьянов С.В., Гольдберг Ю.М., Ермаков А.Н.и д.р.; опубликовано: 10.10.2004). Недостатком способа является проведение предобработки воздухом при жестких условиях - высоких температуре и давлении.

Наиболее близким к предлагаемому изобретению является вариант крекинга вакуумного газойля, предварительно окисленного пероксидом водорода в присутствии муравьиной кислоты. (Iovik Y.A., Krivtsov Е.В. Chemical transformations of sulfur-containing components of vacuum distillate in the course of combined thermo-oxidative treatment // AIP Conference Proceeding. - V. 2051. - P. 020107). Мольное соотношение серы в вакуумном газойле к использованному количеству пероксида водорода составляло 1:5, мольное отношение Н2О2:НСООН - 3:4. Перемешивание реакционной смеси проводилось в течение 90 минут. Термокрекинг окисленного вакуумного газойля проводился в реакторе - автоклаве при 500°С в течение 60 минут. Окислительная предобработка позволяет существенно снизить термическую стабильность компонентов вакуумного газойля, благодаря чему достигается высокая степень удаления серы. Однако существенным недостатком являются потери дистиллятных фракций вследствие газообразования, составляющие порядка 20% масс.

Задачей настоящего изобретения является удаление полиароматических термостойких сернистых соединений из вакуумного газойля с одновременным получением дистиллятных фракций.

Техническим результатом предлагаемого способа является получение продукта, характеризующегося высоким содержанием дистиллятных фракций (порядка 70% масс.) при одновременно малом газо- и коксообразовании. При этом полиароматические соединения серы за счет предварительной окислительной модификации разрушаются с образованием менее термостойких производных тиофена.

Поставленная задача решается следующим образом: окисление вакуумного газойля проводят смесью пероксида водорода и муравьиной кислоты в установленных экспериментально оптимальных условиях (продолжительность окисления 90 мин, мольное отношение Н2О2:НСООН = 3:4, So:H2O2 = 1:5). Водную фазу удаляют декантацией, далее полученные образцы подвергают хроматографическому разделению на силикагеле марки АСК. Отношение массы окисленного вакуумного газойля к массе сорбента составляет 1:1. Неполярные компоненты смывают с силикагеля гексаном, концентрат окисленных ароматических и серосодержащих соединений - этанол-бензольной смесью (в объемном соотношении 1:1).

Крекинг компонентов окисленного газойля проводят в реакторах-автоклавах объемом 12 см3 в среде воздуха при температурах 450 и 500°С, с различной продолжительностью процесса. Масса навески окисленного вакуумного газойля составляет 7 г. Материальный баланс рассчитывают следующим образом: выход газообразных продуктов соответствует потере массы реактора с образцом после дегазирования. После удаления жидких продуктов реактор промывают хлороформом и взвешивают. Полученную разницу между массой реактора до эксперимента и после определяют как масса кокса. Фракционный состав жидких продуктов крекинга определяют методом газо-жидкостной хроматографии на хроматографе «Кристалл-2000М» с пламенно-ионизационным детектором. Содержание бензиновой и дизельной фракции определяют на основании времен удерживания н-алканов (ундекана и генэйкозана). Содержание серы определяют в соответствии с ГОСТ Р 51947-2002 методом энергодисперсионной рентгенофлуоресцентной спектрометрии на приборе «Спектроскан SL».

Суммарный состав продуктов термообработки компонентов вакуумного газойля рассматривают с учетом нормирования материального баланса процесса на выходы неполярных продуктов (НП, 74,3% масс.) и полярных продуктов (ПП, 25,7% масс.), полученных при адсорбционном разделении.

ПРИМЕРЫ КОНКРЕТНОГО ВЫПОЛНЕНИЯ

Пример 1. Навеску 30 г вакуумного газойля окисляют при комнатной температуре смесью из 9,23 г раствора пероксида водорода (содержание Н2О2 не менее 35% мас.) и 6,86 г муравьиной кислоты (содержание НСООН не менее 95%). Мольные соотношения Н2О2:НСООН = 3:4, So:H2O2 = 1:5. Водную фазу как побочный продукт протекающих реакций удаляют декантацией. Далее полученный образец подвергают хроматографическому разделению на силикагеле. Отношение массы окисленного вакуумного газойля к массе сорбента составляет 1:1. Неполярные компоненты смывают с силикагеля 120 мл гексана, концентрат окисленных ароматических и серосодержащих соединений - 60 мл этанол-бензольной смеси (в объемном соотношении 1:1). Выделенные неполярные и полярные компоненты отделяют от растворителя посредством вакуумной перегонки и высушивают до постоянной массы.

Далее 7 г полярных продуктов крекируют в реакторе-автоклаве объемом 12 см3 при температуре 500°С в течение 10 минут. Аналогичную навеску неполярных продуктов крекируют в реакторе-автоклаве при температуре 450°С и продолжительности процесса 10 минут. Определяют вещественный и фракционный состав полученных жидких продуктов, а также содержание серы в них. В таблице 1 приведен суммарный состав продуктов термообработки компонентов вакуумного газойля с учетом нормирования материального баланса процесса на выходы НП (74,3% масс.) и ПП (25,7% масс).

Пример 2. Отличается от примера 1 условиями термообработки неполярных продуктов. Крекинг НП проводят при 450°С и продолжительности процесса 30 минут. Суммарные показатели приведены в таблице 1.

Пример 3. Полярные продукты крекируют в условиях, аналогичных примерам 1 и 2. Неполярные компоненты при 450°С и продолжительности процесса 60 минут. Суммарный материальный баланс протекающих процессов с учетом выходов НП и ПП представлен в таблице 1.

Пример 4. Отличается от примеров 1-3 условиями крекинга неполярных продуктов. Процесс проводят при 450°С в течение 90 минут. Суммарные показатели представлены в таблице 1.

Пример 5. Крекинг полярных продуктов проводят в реакторе-автоклаве при температуре 500°С и продолжительности 10 минут. Неполярные продукты подвергают термическому крекингу при тех же условиях. Суммарный состав продуктов крекинга НП и ПП представлен в таблице 1.

Пример 6. Полярные продукты крекируют в аналогичных примерам 1-5 условиях, тогда как для неполярных продуктов на 10 минут увеличивают продолжительность термического воздействия, по сравнению с примером 5. Суммарный материальный баланс представлен в таблице 1. Данные условия характеризуются наиболее качественным составом полученных продуктов.

Пример 7. Условия термообработки полярных продуктов аналогичны вышеуказанным примерам. Крекинг неполярных компонентов проводят при 500°С и времени проведения процесса 30 минут. Суммарный состав продуктов крекинг НП и ПП представлен в таблице 1.

Пример 8. Крекинг полярных продуктов проводят в аналогичных примеру 7 условиях. Термообработку неполярных продуктов проводят при 500°С и продолжительности процесса 40 минут. Суммарный материальный баланс протекающих процессов с учетом выходов НП и ПП представлен в таблице 1.

Таким образом, предлагаемое решение позволяет получать дополнительные количества дистиллятных фракций за счет вовлечения в процесс крекинга полиароматических высокомолекулярных соединений, существенно снизить потери обусловленные газо- и коксообразованием, а также уменьшить содержание серы в жидких продуктах практически в два раза.

Способ переработки вакуумного газойля, включающий предварительное окисление газойля смесью пероксида водорода и муравьиной кислоты при мольном соотношении Н2О2:НСООН = 3:4, So:H2O2 = 1:5 и последующий крекинг в реакторе-автоклаве, отличающийся тем, что окисленный продукт разделяют на полярные и неполярные компоненты, крекинг которых проводят раздельно с различной продолжительностью процесса при температуре 450-500°С.



 

Похожие патенты:

Изобретение относится к области нефтехимии, а именно к способам получения этилена пиролизом углеводородного сырья, в частности, в стадии подготовки продуктов пиролиза к дальнейшей переработке.

Изобретение относится к теплообменнику для резкого охлаждения реакционного газа. Теплообменник содержит: охлаждаемую трубу с двойной стенкой, включающую в себя внутреннюю трубчатую стенку и наружную трубчатую стенку, причем указанная внутренняя трубчатая стенка предназначена для передачи указанного реакционного газа, подлежащего резкому охлаждению, при этом пространство, ограниченное указанной внутренней трубчатой стенкой и указанной наружной трубчатой стенкой, предназначено для передачи теплоносителя; трубчатый соединительный элемент, имеющий раздваивающееся в продольном направлении сечение и содержащий наружную часть стенки и внутреннюю часть стенки, образующие промежуточное пространство, заполненное огнеупорным наполнительным материалом, причем сходящийся конец указанного соединительного элемента предназначен для соединения с подающей трубой для неохлаждаемого реакционного газа, при этом указанная наружная часть стенки соединена с указанной наружной трубчатой стенкой указанной охлаждаемой трубы с двойной стенкой, причем между указанной внутренней частью стенки и указанной внутренней трубчатой стенкой указанной охлаждаемой трубы с двойной стенкой имеется осевой зазор; уплотнительный элемент, предназначенный для уплотнения указанного осевого зазора между указанной внутренней частью стенки и указанной внутренней трубчатой стенкой указанной охлаждаемой трубы с двойной стенкой; при этом кромка указанной внутренней трубчатой стенки, взаимодействующая с указанным уплотнительным элементом, содержит по меньшей мере частично скошенную кромку, включающую в себя скос, взаимодействующий с указанным уплотнительным элементом.

Изобретение относится к установкам переработки тяжелого углеводородного сырья в нефтеперерабатывающей промышленности. Изобретение касается установки замедленной конверсии, включающей блок фракционирования нагретого мазута в смеси с парами термической конверсии, оснащенный линиями вывода газа, легкой и среднедистиллятной фракций, тяжелой газойлевой фракции и остатка, крекинг-печь, оснащенную линией подачи смеси тяжелой газойлевой фракции и части остатка из первого реактора термической конверсии, которая соединена с сепаратором, оснащенным линией вывода паров и линией вывода остатка, на которой размещен первый реактор термической конверсии, оснащенный линией вывода паров и соединенный со вторым реактором термической конверсии линией подачи остатка, к которой примыкают линия вывода части остатка в линию подачи тяжелой газойлевой фракции в крекинг-печь и линия вывода паров из сепаратора, при этом второй реактор термической конверсии оснащен линиями вывода паров и остатка.
Изобретение относится к регулированию содержания серы, присутствующей как сера или соединение серы в потоке исходного углеводородного материала при осуществлении дегидрогенизации углеводорода (углеводородов) (например, пропана), содержащегося в потоке исходного углеводородного материала, до его/их соответствующего олефина (например, пропилена, когда углеводородом является пропан) без обработки потока исходного материала десульфуризацией до того, как он контактирует с псевдоожижающимся катализатором дегидрогенизации, который является как агентом десульфуризации, так и катализатором дегидрогенизации и содержит галлий и платину на глиноземном или глиноземном-кремнеземном носителе катализатора с необязательным щелочным металлом или щелочно-земельным металлом, таким как калий.

Изобретение раскрывает способ получения котельного топлива, включающий вакуумную ректификацию прямогонного мазута с получением утяжеленного гудрона, металлизированной фракции вакуумной ректификации и фракции вакуумного газойля, с последующим висбрекингом утяжеленного гудрона с получением комбинированного продукта висбрекинга, при этом для получения котельного топлива смешивают гудрон утяжеленный, металлизированную фракцию вакуумной ректификации мазута, разбавитель - прямогонное дизельное топливо фракции 160-360°С, комбинированный продукт висбрекинга, характеризующийся тем, что в процессе вакуумной ректификации прямогонного мазута дополнительно выделяют фракцию ректификации прямогонного мазута с температурой кипения 360-390°С и используют ее в качестве дополнительного компонента разбавителя, в котельное топливо дополнительно вводят фракцию каталитического газойля с температурой кипения 190-550°С при следующем соотношении компонентов смешения в котельном топливе в мас.%: гудрон утяжеленный 0,7-12,0; металлизированная фракция вакуумной ректификации прямогонного мазута 0,5-8,0; фракция каталитического газойля с температурой кипения 190-550°С 0,1-3,0 разбавитель: фракция ректификации прямогонного мазута с температурой кипения 360-390°С 0,1-6,0 и прямогонное дизельное топливо фракции 160-360°С 0,1-1,8; комбинированный продукт висбрекинга - остальное до 100,0.

Способ получения котельного топлива, включающий вакуумную ректификацию прямогонного мазута, с получением утяжеленного гудрона и металлизированной фракции вакуумной ректификации, фракции вакуумного газойля с последующим висбрекингом утяжеленного гудрона с получением комбинированного продукта висбрекинга, при этом для получения котельного топлива смешивают гудрон утяжеленный, металлизированную фракцию вакуумной ректификации мазутов, смесь асфальта и экстракта производства масел, разбавитель - прямогонное дизельное топливо фракции 160-360°С, комбинированный продукт висбрекинга, характеризующийся тем, что в процессе вакуумной ректификации смесевого сырья дополнительно выделяют фракцию с температурой кипения 360-390°С и используют ее в качестве дополнительного компонента разбавителя котельного топлива, в котельное топливо дополнительно вводят фракцию каталитического газойля с температурой кипения 190-550°С, при следующем соотношении компонентов смешения в котельном топливе, мас.

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности и может быть использовано, в частности, для повышения глубины переработки тяжелого нефтяного сырья.

Изобретение относится к способу получения разветвленных алканов и разветвленных алкенов в составе топлива или растворителя в результате пиролиза радикальных предшественников.

Изобретение относится к области нефтепереработки, а именно к переработке тяжелых нефтяных остатков в процессе инициированного термокрекинга, и может быть использовано для получения дополнительного количества топлив дистиллятных фракций (с температурой кипения до 360°С).

Изобретение относится к термическому крекингу углеводородных смесей, таких как неотбензиненные сырые нефти или другие углеводородные смеси, для получения олефинов.

Изобретение относится к способу регенерации щелочного раствора, в котором обеспечивают обогащенную щелочную жидкость, содержащую меркаптаны; смешивают обогащенную щелочную жидкость с жидким катализатором с образованием жидкой щелочной каталитической смеси; направляют жидкую щелочную каталитическую смесь в нижнюю секцию вертикальной колонны, выполненной с возможностью создания восходящего потока жидкой щелочной каталитической смеси внутри колонны; впрыскивают кислородсодержащий газ в жидкую щелочную каталитическую смесь с образованием газожидкостной смеси, которая течет вверх внутри колонны и поступает в первую реакционную зону; окисляют меркаптаны в дисульфидное масло в первой реакционной зоне с образованием окисленной газожидкостной смеси; направляют окисленную газожидкостную смесь в трубопровод, расположенный между верхней тарелкой и нижней тарелкой, таким образом, что жидкая смесь дисульфидного масла и щелочи выходит из трубопровода на верхнюю поверхность верхней тарелки, которая неподвижно прикреплена к верхней секции колонны; направляют жидкую смесь дисульфидного масла и щелочи в завесу, присоединенную к нижней поверхности верхней тарелки, где жидкая смесь дисульфидного масла и щелочи вступает в контакт с пучком вертикальных свисающих волокон таким образом, что жидкая смесь дисульфидного масла и щелочи стекает с индивидуальных волокон в пучке во вторую реакционную зону; поддерживают вторую реакционную зону как газовую непрерывную фазу, содержащую от приблизительно 20% до приблизительно 100 об.
Наверх