Спектрометр заряженных частиц

Изобретение относится к области спектрометрии заряженных частиц и может быть использовано для измерения энергетического спектра импульсно-периодических и непрерывных пучков заряженных частиц. Технический результат - подавление высокочастотных гармоник в регистрируемом сигнале при сохранении возможности определять распределение напряжений на поглощающих элементах с последующим восстановлением энергетического спектра заряженных частиц в режиме реального времени. В спектрометре заряженных частиц, содержащем расположенные последовательно по ходу распространения пучка электропроводящие поглощающие элементы, изолированные друг от друга, и систему регистрации и обработки импульсов напряжения, причем суммарная толщина поглощающих элементов находится в соответствии с экстраполированным пробегом заряженных частиц с максимальной энергией в материале поглощающих элементов, согласно изобретению новым является то, что каждый поглощающий элемент подключен к заземляющей шине через сглаживающий интегрирующий RC-фильтр, состоящий из параллельно включенных резистора и конденсатора, при этом система регистрации и обработки подключена к незаземленному выводу резистора. 3 ил.

 

Изобретение относится к области спектрометрии заряженных частиц и может быть использовано для измерения энергетического спектра импульсно-периодических и непрерывных пучков заряженных частиц.

Известно устройство для измерения энергетического спектра импульсных пучков заряженных частиц, содержащее последовательно расположенные металлические фольги, которые через одну подключены к накопительным конденсаторам, а расположенные между ними остальные фольги заземлены, причем неподключенные к фольгам вторые выводы конденсаторов также заземлены (авторское свидетельство SU №550884, «Спектрометр заряженных частиц», опубликовано 05.01.1978).

Известное устройство работает за счет торможения импульсного пучка заряженных частиц и накопления зарядов в сигнальных фольгах. Зная заряд, накопленный на сигнальных фольгах, можно по известным соотношениям восстановить энергетический спектр заряженных частиц.

Недостатком данного устройства является то, что с помощью данной схемы возможна работа только с импульсным пучком заряженных частиц. При попадании на пластины импульсно-периодического, состоящего из субнаносекундных электронных сгустков, или непрерывного пучка происходит накопление зарядов на пластинах конденсаторов и растет напряжение до момента пробоя и выхода конденсатора из строя. Данное устройство не дает возможности проведения измерений спектра импульсно-периодического или непрерывного пучка заряженных частиц в режиме реального времени.

Также известно устройство, содержащее последовательно расположенные металлические фольги, полностью покрытые диэлектрической пленкой, и накопительные емкости, имеющие отдельные разъемы для снятия зарядовых характеристик (патент RU №2581728, «Фольговый зарядовый спектрограф», опубликован 20.04.2016).

Известное устройство работает за счет торможения пучка ускоренных электронов и накопления заряда в фольгах. Общая толщина фольг подбирается из условия равенства экстраполированному пробегу электронов максимальной энергии. Измеренный заряд, который накапливается в фольгах, путем восстановления позволяет определить энергетический спектр пучка заряженных частиц. Каждая фольга покрыта диэлектрической пленкой. Нанесение диэлектрической пленки служит для уменьшения погрешности измерений, вызванной вторичной эмиссией электронов с фолы и наличием объемных зарядов в воздухе.

Недостатком данного устройства также является то, что с помощью данной схемы невозможна работа с импульсно-периодическим или непрерывным пучком заряженных частиц, так как происходит накопление зарядов на пластинах конденсаторов и растет напряжение до момента пробоя и выхода конденсатора из строя. Данное устройство также не дает возможности проведения измерений спектра заряженных частиц в режиме реального времени.

Совокупность признаков, наиболее близкая к совокупности существенных признаков изобретения, присуща известному спектрометру заряженных частиц (Архипов О.В., Бобылева Л.В., Бруданин В.Д. и др. Сообщения объединенного института ядерных исследований Дубна, Измерение энергии сильноточного замагниченного пучка электронов в ЛИУ, 1990).

Известное устройство содержит набор титановых фольг (поглощающих элементов), изолированных между собой с помощью керамических шайб. Весь пакет фольг стягивается с помощью изолированных шпилек. Все фольги нагружены на одинаковые низкоиндуктивные шунты, составленные из параллельно включенных резисторов типа ТВО. Сигналы с шунтов выводятся по кабельным линиям и поступают на линейку аттенюаторов с согласованными сопротивлениями входов и различными коэффициентами деления. Сигналы ослабляются и через линию задержки с дискретным ручным переключением подаются на вход зарядово-цифрового преобразователя. Далее сформированные сигналы передаются на осциллограф и визуализируются на экране. По результатам этих измерений восстанавливается энергетический спектр пучка заряженных частиц.

Недостатками известного устройства, принятого за прототип, является то, что между поглощающими элементами имеются паразитные емкостные связи, и импульсно-периодические пучки заряженных частиц с субнаносекундными длительностями импульсов будут вносить большие погрешности в измерения, так как между соседними поглощающими элементами, образующими высокочастотные контуры, будут возникать паразитные колебания.

Задачей, на решение которой направлено заявляемое изобретение, является создание устройства, позволяющего производить измерение распределения зарядов в поглощающих элементах и восстановление энергетических спектров имлульсно-периодических и непрерывных пучков заряженных частиц с высокой точностью.

Техническим результатом настоящего изобретения является подавление высокочастотных гармоник в регистрируемом сигнале при сохранении возможности определять распределение напряжений на поглощающих элементах с последующим восстановлением энергетического спектра заряженных частиц в режиме реального времени.

Технический результат изобретения обеспечивается тем, что в спектрометре заряженных частиц, содержащем расположенные последовательно по ходу распространения пучка электропроводящие поглощающие элементы, изолированные друг от друга, и систему регистрации и обработки импульсов напряжения, причем суммарная толщина поглощающих элементов находится в соответствии с экстраполированным пробегом заряженных частиц с максимальной энергией в материале поглощающих элементов, согласно изобретению новым является то, что каждый поглощающий элемент подключен к заземляющей шине через сглаживающий интегрирующий RC-фильтр, состоящий из параллельно включенных резистора и конденсатора, при этом система регистрации и обработки подключена к незаземленному выводу резистора.

Сущность изобретения поясняется рисунками.

На фиг. 1 схематично изображено заявляемое устройство, где:

1 - электропроводящие поглощающие элементы;

2 - сглаживающий интегрирующий RC-фильтр;

3 - аналогово-цифровой преобразователь;

4 - контроллер;

5 - персональный компьютер с программным обеспечением.

На фиг. 2 показано распределение напряжений на электропроводящих поглощающих элементах.

На фиг. 3 показан восстановленный энергетический спектр пучка заряженных частиц.

Спектрометр заряженных частиц включает в себя набор электропроводящих поглощающих элементов 1, каждый из которых подключен к заземляющей шине через сглаживающий интегрирующий RC-фильтр 2, состоящий из параллельно включенных резистора и конденсатора. Общая толщина электропроводящих поглощающих элементов немного превышает величину экстраполированного пробега заряженных частиц с максимальной энергией в материале поглощающих элементов. Это делается для того, чтобы обеспечить полное поглощение всех заряженных частиц в поглощающих элементах. Незаземленные выводы резисторов RC-фильтров подключены к входам многоканального аналогово-цифрового преобразователя 3, чьи выходы соединены с входами многоканального контроллера 4. Выход контроллера подключен на вход персонального компьютера 5.

Устройство работает следующим образом. Во время генерации импульсно-периодический пучок заряженных частиц с субнаносекундной длительностью импульсов последовательно проходит через каждый электропроводящий поглощающий элемент сборки. При этом заряженные частицы теряют часть своей кинетической энергии и тормозятся в поглощающих элементах, вызывая протекание тока через резисторы RC-фильтров.

Сглаживающий интегрирующий RC-фильтр пропускает постоянную составляющую и отсекает высокочастотные пульсации напряжений, возникающие на поглощающих элементах в результате прохождения сгустков импульсно-периодического пучка заряженных частиц с субнаносекундными длительностями импульсов.

Благодаря наличию конденсатора в каждом фильтре, устанавливается равновесие между зарядом, накопленным на конденсаторе и зарядом, стекающим через резистор на землю, несмотря на импульсно-периодическую временную структуру пучка.

Номиналы резисторов, используемых в сглаживающем интегрирующем RC-фильтре, выбираются исходя из ожидаемых значений токов и требуемых напряжений на пластинах. Номиналы конденсаторов выбираются так, чтобы обеспечить постоянную времени разряда, намного большую периода следования сгустков в импульсно периодическом пучке заряженных частиц на самой низкой частоте работы ускорителя.

Регистрируемые напряжения на поглощающих элементах снимаются с незаземленных выводов резисторов RC-фильтров и поступают на входы многоканального аналогово-цифрового преобразователя 3. Оцифрованные сигналы поступают на входы многоканального контроллера 4, и затем объединенный сигнал с выхода контроллера подается на вход персонального компьютера 5. На компьютере, с помощью программного обеспечения, полученные сигналы визуализируются и восстанавливаются в энергетический спектр заряженных частиц. Сигналы с поглощающих элементов усредняются контроллером по десяти измерениям для компенсации помех, что обеспечивает повышение точности измерений.

Полный опрос всех n поглощающих элементов с усреднением по десяти измерениям происходит менее чем за 0.1 секунды, что позволяет реализовать работу предложенного спектрометра заряженных частиц в режиме реального времени. Это существенно расширяет функциональные возможности по настройке и работе ускорителей заряженных частиц и дает возможность контролировать рабочие параметры ускорителя, такие как энергетический спектр и ток пучка заряженных частиц.

Пример исполнения устройства. Изготовлен спектрометр заряженных частиц, содержащий в качестве поглощающих элементов 23 изолированные алюминиевые пластины размером 100×100 мм и толщиной 0.15 мм с воздушным зазором 2 мм между каждой парой пластин. Пластины изолированы между собой с помощью диэлектрических шайб и стянуты между собой изолированными шпильками. На пластины под прямым углом подавался импульсно-периодический пучок ускоренных электронов со средней энергией 1.5 МэВ, длительностью сгустка 1 нс и периодом следования сгустков 10 нс. На фиг. 2 изображено распределение напряжений по алюминиевым пластинам. На фиг. 3 приведен восстановленный энергетический спектр пучка ускоренных электронов со средней энергией 1.5 МэВ.

Спектрометр заряженных частиц, содержащий расположенные последовательно по ходу распространения пучка электропроводящие поглощающие элементы, изолированные друг от друга, и систему регистрации и обработки импульсов напряжения, причем суммарная толщина поглощающих элементов находится в соответствии с экстраполированным пробегом заряженных частиц с максимальной энергией в материале поглощающих элементов, отличающийся тем, что каждый поглощающий элемент подключен к заземляющей шине через сглаживающий интегрирующий RC-фильтр, состоящий из параллельно включенных резистора и конденсатора, при этом система регистрации и обработки подключена к незаземленному выводу резистора.



 

Похожие патенты:

Изобретение относится к способам ионного обмена, а также к способу и системе для обнаружения нитратов, и предназначено для десорбции нитрат-ионов из образца в течение ионного обмена с образованием анализируемого иона нитрат-допирующая добавка, который можно зарегистрировать с помощью прибора для спектрометрического анализа.

Изобретение относится к оценке безопасности пищевой продукции, а именно к методу количественного определения содержания окадаиковой кислоты (диарейного токсина моллюсков) в морепродуктах методом ВЭЖХ-МС с использованием жидкостного хроматографа Agilent 1200 HPLC System и масс-спектрометра высокого разрешения Thermo Scientific Orbitrap Elite.

Изобретение относится к области спектрометрии и может быть использовано для анализа аэрозолей. Предложены портативное спектрометрическое устройство (1) подвижности ионов для обнаружения аэрозоля и способ использования устройства.

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов.

Изобретение относится к детекторному устройству, а именно к детекторам для спектрометров, которые могут быть использованы для обнаружения таких веществ как взрывчатка, наркотики, отравляющих веществ кожно-нарывного и нервнопаралитического действия и т.п.

Изобретение относится к способу структурно-химического анализа примесных соединений в растворах или газах. В способе предусмотрена экстракция ионов или их образование из раствора или газа, поступающего внутрь радиочастотной линейной ловушки газодинамического интерфейса через капилляр микронного размера.

Изобретение относится к области масс-спектрометрии. Способ коррекции значений регулировки масс-спектрометра по молекулярной массе для масс-спектрометрического определения массового пика включает задание для масс-спектрометра первого, соответствующего молекулярной массе значения (M1) регулировки, регистрацию соответствующей амплитуды (А1) сигнала, задание второго, соответствующего молекулярной массе значения (М2) регулировки, отличающегося от первого значения (M1) регулировки, измерение соответствующей второй амплитуды (А2) сигнала, задание третьего, соответствующего молекулярной массе значения (М3) регулировки, отличающегося от первого (M1) и второго (М2) значений регулировки, измерение соответствующей третьей амплитуды (A3) сигнала, определение квадратичной функции, содержащей измеренные значения амплитуды в качестве значений у и заданные значения регулировки в качестве значений х, определение максимума квадратичной функции, причем искомое значение регулировки определяют для молекулярной массы из значения х максимума.

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов.

Изобретение относится к методам пробоподготовки биоорганических, в том числе медицинских образцов для определения в них изотопного соотношения 14С/12С и 14С/13С с помощью ускорительного масс-спектрометра (УМС).

Изобретение относится к вакуумной технике, масс-спектрометрической технике и может быть использовано в области исследования газовой проницаемости материалов и задач, сопряженных с точным измерением газовых потоков.

Изобретение относится к области измерения ядерных излучений. Двухканальный сцинтилляционный счетчик ионизирующего излучения двух различных потоков энергий содержит сцинтиллятор, связанный через оптический герметик с кремниевым фотоэлектронным умножителем, источник питания, усилитель-дискриминатор, микроконтроллер, при этом сцинтиллятор выполнен на основе ортосиликата лютеция, легированного церием LYSO, а блок усилителя-дискриминатора содержит два дискриминатора, каждый из которых выполнен с возможностью регистрации электрических импульсов с амплитудой заданного диапазона.

Группа изобретений относится к области обнаружения ионизирующего излучения. Детектор для обнаружения ионизирующего излучения содержит полупроводниковый слой прямого преобразования для производства носителей заряда в ответ на падающее ионизирующее излучение, и множество электродов, соответствующих пикселам для регистрации носителей заряда и генерирующих сигнал, соответствующий зарегистрированным носителям заряда; при этом электрод из упомянутого множества электродов структурирован так, чтобы двухмерным образом переплетаться с по меньшей мере двумя соседними электродами для регистрации носителей заряда упомянутым электродом и по меньшей мере одним соседним электродом.
Изобретение относится к технике измерения ионизирующих излучений. Сущность изобретения заключается в том, что способ определения величины выхода термоядерных нейтронов импульсного источника дополнительно содержит этапы, на которых подсчитывают количество импульсов тока в выбранном временном интервале, градуировку детектора производят непосредственно перед проведением измерений от эталонного импульсного источника, для чего детектор относительно эталонного источника устанавливают на расстоянии, соответствующем его местоположению при проведении измерений с импульсным источником, при этом используют прибор измерения выхода нейтронов с известной погрешностью, который устанавливают на заданном в паспорте расстоянии от эталонного источника, далее неоднократно снимают показания с детектора и этого прибора для достижения относительной погрешности определения фактической чувствительности детектора к нейтронному излучению в реальной геометрии и реальных климатических условиях измерения на уровне не более ±15% при доверительной вероятности Р=0,95, которую учитывают в качестве постоянного коэффициента при определении выхода нейтронов импульсного источника.

Изобретение относится к области ядерного приборостроения и может быть использовано при радиационном мониторинге в качестве портативного средства поиска и определения направления на источник фотонного излучения по двум угловым координатам в телесном угле 2π стерадиан.

Изобретение относится к области поиска и обнаружения источников ионизирующего излучения и предназначается для поиска точечных источников гамма-излучения. Способ определения местоположения точечного источника гамма-излучения на местности содержит этапы, на которых осуществляют ведение радиационной разведки с измерением мощности дозы гамма-излучения, при этом проводят измерения в точках, лежащих на окружности с радиусом R, внутри которой находится источник, определяют точки с наименьшим Pmin и наибольшим Рmах значениями мощности дозы, при этом считают, что искомый источник находится на линии, проходящей через эти точки, рассчитывают расстояние от точки с наибольшим Рmах значением мощности дозы до источника гамма-излучения по формуле Технический результат – повышение оперативности поиска и снижение дозовых нагрузок на персонал, задействованный в проведении работ.

Изобретение относится к области химической дозиметрии и может использоваться при косвенном определении поглощенной дозы гамма-излучения. Способ определения поглощенной дозы гамма-излучения заключается в измерении величины светопропускания дозиметрической жидкости от волнового числа и расчете поглощенной дозы гамма-излучения по установленной градуировочной зависимости величины светопропускания при постоянном волновом числе, при этом в качестве дозиметрической жидкости используют двухфазную систему, состоящую из дихлорбензола и элементарной серы в соотношении компонентов, соответствующем насыщению серы в растворителе, мас.%: дихлорбензол 98,0-99,0, элементарная сера 1,0-2,0.

Изобретение относится к области измерительной техники, а именно к способам корректировки и стабилизации измерительных параметров сцинтилляционных детекторов ионизирующих излучений (СДИ).

Группа изобретений относится к позитронно-эмиссионной томографии (PET). Детектор фотонов содержит массив датчиков из расположенных в плоскости оптических датчиков, четыре идентичных сцинтилляционных кристаллических стержня, первый слой со светоделительным участком, второй слой со светоделительным участком, блок обработки сигналов, соединенный с массивом датчиков, выполненный с возможностью оценивать оценочную глубину взаимодействия одного из четырех идентичных сцинтилляционных кристаллических стержней по детектированному событию на основании соотношения воспринимаемой люминесценции двух из четырех идентичных сцинтилляционных кристаллических стержней, расположенных диагонально друг к другу и обращенных к одному из четырех идентичных сцинтилляционных кристаллических стержней.

Группа изобретений относится к детектору излучения. Детектор излучения содержит преобразующий элемент для преобразования падающего излучения в электрические сигналы; схему считывания для обработки упомянутых электрических сигналов; нагревательное устройство, отделенное от схемы считывания, для нагревания преобразующего элемента, причем нагревательное устройство содержит элемент Пельтье, и причем источник тепла упомянутого элемента Пельтье ориентирован к преобразующему элементу, а его теплоотвод ориентирован к схеме считывания.

Изобретение относится к медицине, а именно к радиологии и медицинской биофизике, и может быть использовано для реконструктивного дозиметрического контроля в протонной терапии сканирующим пучком.
Наверх