Способ формирования массовой линии ионов во времяпролетном масс-спектрометре

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов. Способ основан на выталкивании ионов из ускоряющего промежутка нелинейным полем и отклонении ионов в бесполевом пространстве двумя парами отклоняющих пластин, формирующих динамическое электрическое поле. Технический результат - повышение разрешающей способности и чувствительности времяпролетных масс-спектрометров, работающих в режиме сепарации массовых линий. 2 ил.

 

Изобретение относится к приборостроению средств экспериментальной физики и химии, в частности к масс-спектрометрии.

Наиболее близким по технической сущности к заявляемому способу является выбранный в качестве прототипа способ формирования массовой линии во времяпролетном масс-спектрометре (патент SU 1691905 A1 H01J 49/40, опубл. Бюл. №42 15.11.91 г.), включающий ионизацию атомов в источнике ионов, ускорение ионов выталкивающим импульсом электрического поля, временная зависимость которого имеет вид:

где:

E0 - напряженность электрического поля;

m - масса иона;

q - заряд иона;

Т - точка расположения массовой линии на временной оси;

- длина бесполевого пространства;

- расстояние от области ионизации до бесполевого пространства;

t0 - длительность, в течение которой напряженность поля постоянна во времени;

VГР - скорость иона, пролетающего ускоряющий промежуток за время t0;

дрейф ионов в бесполевом пространстве, отклонение в бесполевом пространстве поперечным полем всех ионов, вылетевших из ускоряющего промежутка за время t0, и регистрацию ионов в приемнике ионов.

Недостатком прототипа является сложность реализации генератора выталкивающих импульсов и необходимость точной синхронизации начала ионизации с выталкивающим и отклоняющим импульсами, а также необходимость точного определения длительности отклоняющего импульса. Так же для формирования массовой линии только из ионов одной массы требуется узкая зона ионизации и короткое время ионизации, что не позволяет улучшить разрешающую способность и чувствительность одновременно.

В основу изобретения положена задача разработки способа формирования массовой линии от ионов одной массы, позволяющей увеличить время ионизации, размер зоны ионизации и использовать выталкивающий и отклоняющий импульсы в виде постоянных или легко реализуемых периодических функций.

Поставленная задача достигается тем, что в способе формирования массовой линии ионов во времяпролетном масс-спектрометре, включающем ионизацию атомов в источнике ионов, ускорение ионов выталкивающим импульсом электрического поля, временная зависимость которого имеет вид:

где:

E0 - напряженность электрического поля;

m - масса иона;

q - заряд иона;

Т - точка расположения массовой линии на временной оси;

- длина бесполевого пространства;

- расстояние от области ионизации до бесполевого пространства;

t0 - длительность, в течение которой напряженность поля постоянна во времени;

VГР - скорость иона, пролетающего ускоряющий промежуток за время t0;

дрейф ионов в бесполевом пространстве, отклонение в бесполевом пространстве поперечным полем всех ионов, вылетевших из ускоряющего промежутка за время t0, и регистрацию ионов в приемнике ионов, согласно изобретению, с целью улучшения сепарации выбранной массовой линии и увеличения разрешающей способности и чувствительности отклонение ионов производится двумя парами отклоняющих пластин, векторы напряженности электрического поля которых взаимно перпендикулярны и перпендикулярны оси движения ионов, и напряжение между которыми имеет вид:

где Ux - напряжение между отклоняющими пластинами первой пары;

Uy - напряжение между отклоняющими пластинами второй пары;

U - амплитуда отклоняющих импульсов;

Т - период отклоняющих импульсов;

t - время,

а выталкивающее поле имеет вид:

где m - масса иона;

n - кратность периода колебаний;

|е| - заряд иона;

- расстояние от зоны ионизации до бесполевого участка;

- длина отклоняющих пластин.

Сущность способа поясняется следующими чертежами. На фиг. 1 изображена схема времяпролетного масс-спектрометра. На фиг. 2 изображены графики напряжений между отклоняющими пластинами.

Устройство, реализующее способ, содержит ионный источник с электронной пушкой 1, заземленные сетки 2, ускоряющую сетку 3, генератор выталкивающих импульсов 4, генератор выталкивающих импульсов 5, две пары отклоняющих пластин 6, приемник ионов 7 и ионный коллиматор 8. Для устранения массовых линий несепарируемых ионов предусмотрено их отклонение с помощью периодического во времени электростатического поля, создаваемого отклоняющими пластинами.

Заземленные сетки 2 расположены на расстоянии друг от друга между выталкивающей сеткой 3 и приемником ионов 7, образуя общую оптическую ось. Поток электронов из электронной пушки ионного источника с электронной пушкой 1 создает плоскость ионизации между ускоряющей сеткой 3 и ближайшей к ней заземленной сеткой 2. Четыре отклоняющих пластины 6 образуют две пары, которые расположены таким образом, чтобы вектора напряженностей формируемых ими электрических полей были взаимно перпендикулярны и перпендикулярны общей оптической оси, а сами отклоняющие пластины были симметричны друг другу относительно этой оси. Выход синхронизации генератора выталкивающих импульсов 4 соединен со входом синхронизации ионного источника с электронной пушкой 1. Выходы генератора отклоняющих импульсов подключены к одной из отклоняющих пластин 6 каждой пары, вторая отклоняющая пластина каждой пары заземлена. Заземленные сетки 2 заземлены.

Предложенный способ заключается в формировании массовой линии только от одной массы путем отклонения ионов, неудовлетворяющих условию изохронности, системой отклоняющих пластин с периодическим изменением потенциала на них с равными амплитудами и частотами, но со сдвигом фазы на 180°. При этом допускается длительная ионизация, что повышает чувствительность масс-спектрометра.

Ионизация газа производится электронным пучком, который формируется в ионном источнике с электронной пушкой 1, и траектория движения электронов расположена между ускоряющей сеткой 3 и соседней с ней заземленной сеткой 2. Таким образом, будем считать, что ионы пролетают расстояние и оказываются в бесполевом пространстве . Для обеспечения движения ионов параллельно оси масс-спектрометра z в начале бесполевого участка расположен ионный коллиматор 8, который может быть выполнен в виде наборной диафрагмы, линзы Френеля, квадруполя и т.д. Далее ионы попадают в пространство между двумя парами отклоняющих пластин 6, которые расположены таким образом, чтобы вектора напряженностей формируемых ими электрических полей были взаимно перпендикулярны и перпендикулярны оси z.

Сигнал на отклоняющих пластинах имеет вид:

где Т - период колебаний, U - амплитуда.

Скорость ионов в направлении приемника ионов (вдоль оси z) определяется выражением:

где V0 - начальная скорость иона определяется как тепловая скорость и подчиняется закону Максвелла-Больцмана, е - заряд иона, m - масса иона, U32 - ускоряющее напряжение, t1 - время вылета иона в бесполевой участок

В случае постоянного напряжения на ускоряющей сетке скорость (2) можно выразить в виде:

Для компенсации начального энергетического разброса ионов напряжение U32 следует выбирать с учетом выполнения условия V>>V0.

Далее ионы движутся равномерно вдоль оси z. В какой-то момент ионы попадают в пространство между отклоняющими пластинами 6. Условие прямолинейности движения вдоль оси z в пространстве дрейфа имеет вид:

где Vx и Vy - скорость иона в направлении осей х и у.

Это условие вытекает из того, что половину периода ионы будут отклоняться к одной пластине, а другую половину периода - к противоположенной. Суммарное отклонение при этом будет равно нулю.

Для реализации данного условия (4) предложенным способом длина отклоняющих пластин и период отклоняющих импульсов должны быть связаны зависимостью:

где Т - период импульсов на отклоняющих пластинах 6, n - целое натуральное положительное число больше ноля.

То есть время пролета иона между отклоняющими пластинами должно быть кратно периоду меандра отклоняющего напряжения. При использовании только одной пары отклоняющих пластин в формировании массовой линии могут принимать участия ионы, для которых уравнение (5) не выполняется. Фаза меандра на одной паре отклоняющих пластин смещена относительно другой пары отклоняющих пластин. Это необходимо для того, чтобы ионы с массой, отличной от m, не участвовали в формировании массовой линии, так как для них не будет выполняться условие (4). Это вызвано тем, что процесс ионизации не мгновенный и может занимать некоторое время Т0. Предположим, что ионы с массой m1≠m прилетели в пространство отклоняющих пластин позднее или раньше ионов массой m. Учитывая, что скорость V1≠V время пролета тоже будет отличаться. Тогда, если переключение отклоняющего напряжения произойдет в момент, когда ионы будут посередине отклоняющих пластин, то условие (4) выполнится даже при невыполнении условия (5). Вторая пара отклоняющих пластин исключает такое развитие событий, так как выполнит отклонение всех лишних ионов в другой плоскости. При этом добиваться точной фразировки отклоняющих напряжение U1 и U1 не обязательно.

Выбор массы, из которой будет сформирована массовая линия, осуществляется изменением амплитуды выталкивающего импульса, величину которой можно определить из (5) с учетом (3):

где n подбирается таким образом, чтобы V>>V0, а nТ не должно превышать времени ионизации Т0.

Таким образом, окончательно уравнение (6) примет вид:

где m - масса иона;

n - кратность периода колебаний;

|е| - заряд иона;

- расстояние от зоны ионизации до бесполевого участка;

- длина отклоняющих пластин.

Длина и напряжение U на отклоняющих пластинах выбирается таким образом, чтобы ионы, для которых не выполняется условие прямолинейности движения вдоль оси z, отклонились на величину, большую размера входного окна приемника ионов 7.

Как видно из (7), длина бесполевого участка не оказывает влияние на формирование массовой линии, а значит этот участок ограничен только конструктивным исполнением ионного коллиматора 8 и может быть уменьшен по сравнению с классическими времяпролетными масс-спектрометрами. Длина второго бесполевого участка зависит только от амплитуды напряжения на отклоняющих пластинах, что позволяет существенно уменьшить размеры масс-спектрометра без потери разрешающей способности.

Способ формирования массовой линии ионов во времяпролетном масс-спектрометре, включающий ионизацию атомов в источнике ионов, ускорение ионов выталкивающим импульсом электрического поля, временная зависимость которого имеет вид:

где:

Е0 - напряженность электрического поля;

m - масса иона;

q - заряд иона;

Т - точка расположения массовой линии на временной оси;

l12 - длина бесполевого пространства;

l01 - расстояние от области ионизации до бесполевого пространства;

t0 - длительность, в течение которой напряженность поля постоянна во времени;

VГР - скорость иона, пролетающего ускоряющий промежуток за время t0;

дрейф ионов в бесполевом пространстве, отклонение в бесполевом пространстве поперечным полем всех ионов, вылетевших из ускоряющего промежутка за время t0, и регистрацию ионов в приемнике ионов, отличающийся тем, что, с целью улучшения сепарации выбранной массовой линии и увеличения разрешающей способности и чувствительности, отклонение ионов производится двумя парами отклоняющих пластин, векторы напряженности электрического поля которых взаимно перпендикулярны и перпендикулярны оси движения ионов, и напряжение между которыми имеет вид:

где Ux - напряжение между отклоняющими пластинами первой пары;

Uy - напряжение между отклоняющими пластинами второй пары;

U - амплитуда отклоняющих импульсов;

Т - период отклоняющих импульсов;

t - время,

а выталкивающее поле имеет вид:

где m - масса иона;

n - кратность периода колебаний;

|е| - заряд иона;

l02 - расстояние от зоны ионизации до бесполевого участка;

l6 - длина отклоняющих пластин.



 

Похожие патенты:

Изобретение относится к спектрометрам ионной подвижности, которые находят широкое применение для контроля содержания различных веществ в воздухе и, в частности, для обнаружения малых концентраций взрывчатых, наркотических, опасных и токсичных веществ, проведения медицинской диагностики, контроля качества пищевой продукции и промышленных материалов.

Изобретение относится к области спектрометрии. Модификатор ионов может применяться для модификации части ионов, которые входят в дрейфовую камеру через затвор, управляющий входом ионов в дрейфовую камеру.

Изобретение относится к области газового анализа и может быть использовано для бесконтактного дистанционного отбора проб воздуха с твердых поверхностей и подачи их в аналитический тракт приборов газового анализа для обнаружения следов взрывчатых веществ.

Изобретение относится к области газового анализа и может быть использовано для обнаружения микропримесей веществ в газовых средах, в частности атмосфере воздуха. Устройство включает цилиндрический корпус, внешний и внутренний цилиндрические электроды, расположенные концентрически относительно цилиндрического корпуса и образующие аналитический канал спектрометра, диэлектрический цилиндр, изолирующий внешний цилиндрический электрод от корпуса, источник ионизации, расположенный на входе в аналитический канал, входную камеру, штуцера для ввода пробы исследуемой газовой фазы, штуцеры для ввода чистого газа носителя, обтекатель, установленный на входе в аналитический канал и изолированный от внутреннего цилиндрического электрода диэлектрической вставкой; выходной штуцер, апертурную сетку, электрод электрометра, кольцевой блокирующий электрод, фокусирующие электроды.

Изобретение относится к области масс-спектрометрии и направлено на совершенствование методов и устройств масс-разделения по времени пролета в линейных высокочастотных полях.

Изобретение относится к области обнаружения веществ в образце, в частности к спектрометрам ионной подвижности. Устройство обнаружения, содержащее участок ионизации, ионный затвор, содержащий два электрода, ионный модификатор, содержащий два электрода, дрейфовую камеру и коллектор.

Изобретение относится к области газового анализа и предназначено для обнаружения малых концентраций целевых веществ в газовых средах со сложным составом примесей, концентрации которых превышают концентрации целевых веществ.

(57) Изобретение относится к области спектрометрии заряженных частиц и может быть использовано для измерения зарядового и массового состава ионов плазмы. Времяпролетный спектрометр содержит вакуумную камеру (1), в которой последовательно расположены труба дрейфа (2) и детектор ионов (7), на входном и выходном торцах трубы дрейфа (2) установлены электроды (3, 4), прозрачные для ионов и электрически связанные с ней, перед входным электродом (3) размещен заземленный электрод (5), труба дрейфа (2) электрически соединена с импульсным источником ускоряющего напряжения (8).

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований. Технический результат - повышение разрешения и чувствительности при анализе ионного нейтрального газа.

Изобретение относится к области газового анализа и предназначено для обнаружения микропримесей веществ в газовых средах, в частности атмосфере воздуха, имеет применение в газовой хроматографии в качестве чувствительного детектора.

Изобретение относится к детекторному устройству, а именно к детекторам для спектрометров, которые могут быть использованы для обнаружения таких веществ как взрывчатка, наркотики, отравляющих веществ кожно-нарывного и нервнопаралитического действия и т.п.

Изобретение относится к способу структурно-химического анализа примесных соединений в растворах или газах. В способе предусмотрена экстракция ионов или их образование из раствора или газа, поступающего внутрь радиочастотной линейной ловушки газодинамического интерфейса через капилляр микронного размера.

Изобретение относится к области масс-спектрометрии. Способ коррекции значений регулировки масс-спектрометра по молекулярной массе для масс-спектрометрического определения массового пика включает задание для масс-спектрометра первого, соответствующего молекулярной массе значения (M1) регулировки, регистрацию соответствующей амплитуды (А1) сигнала, задание второго, соответствующего молекулярной массе значения (М2) регулировки, отличающегося от первого значения (M1) регулировки, измерение соответствующей второй амплитуды (А2) сигнала, задание третьего, соответствующего молекулярной массе значения (М3) регулировки, отличающегося от первого (M1) и второго (М2) значений регулировки, измерение соответствующей третьей амплитуды (A3) сигнала, определение квадратичной функции, содержащей измеренные значения амплитуды в качестве значений у и заданные значения регулировки в качестве значений х, определение максимума квадратичной функции, причем искомое значение регулировки определяют для молекулярной массы из значения х максимума.

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов.

Изобретение относится к методам пробоподготовки биоорганических, в том числе медицинских образцов для определения в них изотопного соотношения 14С/12С и 14С/13С с помощью ускорительного масс-спектрометра (УМС).

Изобретение относится к вакуумной технике, масс-спектрометрической технике и может быть использовано в области исследования газовой проницаемости материалов и задач, сопряженных с точным измерением газовых потоков.

Изобретение относится к исследованию или анализу материалов путем определения их химических или физических свойств и может быть использовано для хромато-масс-спектрометрической идентификации контролируемых токсичных химикатов в сложных смесях в рамках мероприятий по выполнению Конвенции о запрещении производства, накопления и применения химического оружия, а также его уничтожении.

Изобретение относится к области масс-спектрометрии. Способ образования бескапельного непрерывного стабильного ионного потока при электрораспылении растворов анализируемых веществ в источниках ионов с атмосферным давлением характеризуется отсутствием образования капель в начале процесса электрораспыления, что существенно упрощает процесс получения непрерывного стабильного и монодисперсного потока заряженных частиц в широком диапазоне объемных скоростей потоков распыляемой жидкости и, соответственно, стабильным ионным током анализируемых веществ, поступающих в анализатор, а также долговременной работой источника ионов без разборки и чистки.

Изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач в органической и биоорганической химии, иммунологии, биотехнологии, криминалистике, протеомике при исследовании лабильных веществ с использованием метода «электроспрей».

Изобретение относится к области химического анализа примесных соединений и ионов в растворах. Основой изобретения является экстракция ионов или их образование из раствора, просачивающегося в вакуумную часть газодинамического интерфейса через трековую мембрану под действием атмосферного давления и электрического поля в каналах мембраны.

Изобретение относится к области масс-спектрометрии. Двухканальный масс-спектрометр по времени пролета с однонаправленными каналами включает параллельные двухканальные ускорители (1), вакуум-камеру (2), источник (3) ионов в виде лазерной установки ионного распыления, два детектора (4, 5) ионов и ионный коллиматор (6); при этом, когда ионные пучки, создаваемые источником (3) ионов в виде лазерной установки ионного распыления, поступают в двухканальные ускорители (1), части ионных пучков соответственно ускоряются в одном направлении к двум детекторам (4, 5) ионов и регистрируются. Ионные пучки, созданные источником (3) ионов в виде лазерной установки ионного распыления, проходят через ионный коллиматор (6) и разделяются двухканальным масс-спектрометром по времени пролета на верхнюю часть и нижнюю часть, при этом верхняя часть и нижняя часть, соответственно, отклоняются под косым углом и фокусируются на верхний и нижний детекторы (4, 5) ионов, и, таким образом, формируется спектр масс ионов по времени пролета. Если один детектор ионов заменить электронным анализатором энергии, то одновременно с этим можно провести эксперимент с фотоэлектронным энергетическим спектром для отбора определенного иона. Данное изобретение можно сочетать с электронным анализатором энергии для того, чтобы быстро выполнить эксперимент с лазерным облучением на ионах, имеющих множество пиков масс, и электронный спектр обнаруженного иона может строго соответствовать времени пролета для его максимума масс. Технический результат - повышение отношения сигнал-шум и разрешения по энергии. 8 з.п. ф-лы, 5 ил.
Наверх