Полосовой фильтр на двух операционных усилителях с независимой подстройкой основных параметров

Изобретение относится к средствам выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в обеспечении независимой подстройки трех основных параметров АЧХ – частоты полюса (ωp), затухания полюса (dp), а также коэффициента передачи в полосе пропускания (М). Полосовой фильтр содержит два дифференциальных операционных усилителя, резисторы и конденсаторы. Причем частота полюса ωp, на которой фазовый сдвиг равен -180°, изменяется за счет второго 5 и третьего 6 резисторов (R5 и R6) в относительно широких пределах, при изменении сопротивлений первого 4 (R4), пятого 9 (R9) и восьмого 12 (R12) резисторов изменяется наклон ФЧХ в области частоты полюса и изменяется подъем АЧХ на этой частоте. При этом частота полюса остается неизменной (ωp=const). При настройке затухания полюса изменяются частоты, на которых фазовый сдвиг составляет -135° и -225°. Для получения заданного коэффициента передачи М на центральной частоте изменяется сопротивление четвертого 8 (R8) резистора. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Полосовые АRC-фильтры (ПФ) относятся к числу достаточно распространенных аналоговых устройств, определяющих качественные показатели многих радиотехнических систем, в том числе для цифровой обработки сигналов [1-28].

Ближайшим прототипом заявляемого устройства является полосовой АRC-фильтр по патенту RU 2150782 «Полосовой ARC-фильтр с понижением частоты полюса», опубл.: 10.06.2000. Он содержит (фиг. 1) вход 1 и выход 2 устройства, первый 3 дифференциальный операционный усилитель, выход которого соединен с выходом 2 устройства, первый 4, второй 5 и третий 6 последовательно соединённые резисторы, которые включены между выходом устройства 2 и общей шиной источников питания 7, четвёртый 8, пятый 9, шестой 10, седьмой 11 и восьмой 12 резисторы, а также первый 13 и второй 14 конденсаторы, каждый из которых содержит первый и второй выводы, причём общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 дифференциального операционного усилителя.

Существенный недостаток ARC-фильтра-прототипа фиг. 1, а также других известных фильтров рассматриваемого класса [1-28], состоит в том, что в процессе подстройки его одного параметра, например, затухания или частоты полюса, изменяется третий важный параметр амплитудно-частотной характеристики (АЧХ) – коэффициент передачи в полосе пропускания. Это значительно усложняет производство и настройку (например, с помощью микросхем цифровых потенциометров [29] или лазерной подгонки) ARC-фильтров данного класса.

Основная задача предполагаемого изобретения состоит в создании схемы полосового АRC-фильтра, которая обеспечивает независимую подстройку трех основных параметров АЧХ – частоты полюса (ωp), затухания полюса (dp), а также коэффициента передачи в полосе пропускания (М).

Поставленная задача достигается тем, что в полосовом ARC-фильтре фиг. 1, содержащем вход 1 и выход 2 устройства, первый 3 дифференциальный операционный усилитель, выход которого соединен с выходом 2 устройства, первый 4, второй 5 и третий 6 последовательно соединённые резисторы, которые включены между выходом устройства 2 и общей шиной источников питания 7, четвёртый 8, пятый 9, шестой 10, седьмой 11 и восьмой 12 резисторы, а также первый 13 и второй 14 конденсаторы, каждый из которых содержит первый и второй выводы, причём общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 дифференциального операционного усилителя, предусмотрены новые элементы и связи – в схему введён дополнительный дифференциальный операционный усилитель 15, выход которого соединён с неинвертирующим входом первого 3 дифференциального операционного усилителя через последовательно соединенные седьмой 11 резистор и первый 13 конденсатор, общий узел которых связан с выходом первого 3 дифференциального операционного усилителя через дополнительный резистор 16, причем общий узел последовательно соединенных второго 5 и третьего 6 резисторов соединен с первым выводом второго 14 конденсатора, второй вывод которого соединен с общим узлом последовательно соединенных седьмого 11 резистора и первого 13 конденсатора, между входом 1 устройства и выходом дополнительного дифференциального операционного усилителя 15 включены последовательно соединенные четвертый 8 и пятый 9 резисторы, причем общий узел последовательно соединенных четвёртого 8 и пятого 9 резисторов соединён с инвертирующим входом дополнительного дифференциального операционного усилителя 15 и через восьмой 12 резистор связан с инвертирующим входом первого 3 дифференциального операционного усилителя, причём неинвертирующий вход дополнительного дифференциального операционного усилителя 15 подключён к общей шине источников питания 7, а неинвертирущий вход первого 3 дифференциального операционного усилителя связан с общей шиной источников питания через шестой 10 резистор.

На чертеже фиг. 1 показана схема ПФ-прототипа, а на чертеже фиг. 2 – схема заявляемого устройства в соответствии с п. 1 формулы изобретения.

На чертеже фиг. 3 представлена схема заявляемого ПФ в соответствии с п. 2 формулы изобретения.

На чертеже фиг. 4 приведены амплитудно-частотные и фазо-частотные характеристики заявляемого полосового фильтра при подстройке частоты полюса ωp.

На чертеже фиг. 5 показаны амплитудно-частотные и фазо-частотные характеристики заявляемого полосового фильтра при подстройке затухания полюса dp.

На чертеже фиг. 6 представлены амплитудно-частотные и фазо-частотные характеристики заявляемого полосового фильтра при подстройке коэффициента передачи M.

Полосовой фильтр на двух операционных усилителях с независимой подстройкой основных параметров фиг. 2 содержит вход 1 и выход 2 устройства, первый 3 дифференциальный операционный усилитель, выход которого соединен с выходом 2 устройства, первый 4, второй 5 и третий 6 последовательно соединённые резисторы, которые включены между выходом устройства 2 и общей шиной источников питания 7, четвёртый 8, пятый 9, шестой 10, седьмой 11 и восьмой 12 резисторы, а также первый 13 и второй 14 конденсаторы, каждый из которых содержит первый и второй выводы, причём общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 дифференциального операционного усилителя. В схему введён дополнительный дифференциальный операционный усилитель 15, выход которого соединён с неинвертирующим входом первого 3 дифференциального операционного усилителя через последовательно соединенные седьмой 11 резистор и первый 13 конденсатор, общий узел которых связан с выходом первого 3 дифференциального операционного усилителя через дополнительный резистор 16, причем общий узел последовательно соединенных второго 5 и третьего 6 резисторов соединен с первым выводом второго 14 конденсатора, второй вывод которого соединен с общим узлом последовательно соединенных седьмого 11 резистора и первого 13 конденсатора, между входом 1 устройства и выходом дополнительного дифференциального операционного усилителя 15 включены последовательно соединенные четвертый 8 и пятый 9 резисторы, причем общий узел последовательно соединенных четвёртого 8 и пятого 9 резисторов соединён с инвертирующим входом дополнительного дифференциального операционного усилителя 15 и через восьмой 12 резистор связан с инвертирующим входом первого 3 дифференциального операционного усилителя, причём неинвертирующий вход дополнительного дифференциального операционного усилителя 15 подключён к общей шине источников питания 7, а неинвертирущий вход первого 3 дифференциального операционного усилителя связан с общей шиной источников питания через шестой 10 резистор.

На чертеже фиг. 3, в соответствии с п. 2 формулы изобретения, общий узел последовательно соединенных второго 5 и третьего 6 резисторов соединен с первым выводом второго 14 конденсатора через дополнительный повторитель напряжения 17 с высоким входным и низким выходным сопротивлением.

Рассмотрим работу схемы фиг. 2.

Свойства схемы классического полосового фильтра второго порядка, в том числе схемы фиг. 2, определяются его передаточной функцией [28]

где М – коэффициент передачи фильтра на центральной частоте; ωp – частота полюса; dp – затухание полюса.

Коэффициенты передаточной функции предлагаемой схемы полосового фильтра определяются по выражениям:

- коэффициент передачи

, (1)

- частота полюса

, (2)

- затухание полюса

(3)

где , , , , , , , , - сопротивления первого 4, второго 5, третьего 6, четвертого 8, пятого 9, шестого 10, седьмого 11, восьмого 12, и дополнительного 16 резисторов соответственно, , - емкости первого 13 и второго 14 конденсаторов соответственно.

Независимая настройка параметров ПФ фиг. 2 возможна тогда, когда при настройке последующего параметра схемы не потребуется изменять сопротивления резисторов, определяющие уже настроенный параметр. Из анализа полученных выше формул (1)-(3) для ωp, dp, М следует, что в предлагаемом ПФ фиг. 2 такая настройка осуществима в следующей последовательности:

Первый этап: настраивается частота полюса ωp путем изменения сопротивлений второго 5 и третьего 6 резисторов (R5 и R6). Далее номиналы этих резисторов фиксируются.

Второй этап: настраивается затухание полюса dp путем изменения сопротивлений первого 4 (R4), пятого 9 (R9) и восьмого 12 (R12) резисторов. На втором этапе сопротивления второго 5 и третьего 6 резисторов (R5 и R6) не изменяются.

Третий этап: настраивается коэффициент передачи М путем изменения сопротивления четвертого 8 (R8) резистора. На этом этапе сопротивления других резисторов не изменяются.

Следует заметить, что другие известные схемы ПФ [1-28], выполненные на двух операционных усилителях, данным свойством не обладают.

Эффективность рассмотренного выше алгоритма настройки ПФ фиг. 2 подтверждаются результатами компьютерного моделирования (фиг. 4-фиг. 6).

При моделировании схемы фиг. 2 собственная частота полюса RC-цепи

(4)

была выбрана равной 1000 Гц. В рассматриваемой схеме ПФ при любом соотношении второго 5 и третьего 6 резисторов (R5 и R6) частота полюса фильтра будет всегда ниже частоты полюса RC-цепи.

По виду ФЧХ фиг. 4 можно судить, что частота полюса ωp, на которой фазовый сдвиг равен -1800, изменяется за счет второго 5 и третьего 6 резисторов (R5 и R6) в относительно широких пределах.

По виду ФЧХ фиг. 5 можно установить, что при изменении сопротивлений первого 4 (R4), пятого 9 (R9) и восьмого 12 (R12) резисторов изменяется наклон ФЧХ в области частоты полюса и изменяется подъем АЧХ на этой частоте. При этом частота полюса остается неизменной (ωp=const). При настройке затухания полюса изменяются частоты, на которых фазовый сдвиг составляет -1350 и -2250.

Для получения заданного коэффициента передачи М на центральной частоте изменяется сопротивление четвертого 8 (R8) резистора. При этом влияние R8 на АЧХ и ФЧХ показано на чертеже фиг. 6.

Формулы (1) - (3) справедливы при выборе параметров сопротивлений резисторов таким образом, чтобы в схеме выполнялось условие

. (4)

Если по каким-либо причинам при проектировании схемы фильтра фиг. 2 это условие не удается выполнить, то для устранения влияния на параметры АЧХ выходного сопротивления делителя напряжения, состоящего из второго 5 и третьего 6 резисторов, необходимо включить повторитель напряжения 17 (или усилитель с единичным коэффициентом усиления) – фиг. 3. Это обеспечивает более высокое ослабление сигнала в диапазоне высоких частот.

Таким образом, предлагаемое устройство имеет существенные преимущества в сравнении с прототипом – обеспечивает независимую подстройку основных параметров.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент SU 296228, 1971 г.

2. Патент SU 964977, 1982 г.

3. Патент SU 1629960, 1991 г.

4. Патент SU 1755364, 1992 г.

5. Патент SU 438095, 1974 г.

6. Патент RU 2154337, 2000 г.

7. Патент RU 2150782, 2000 г.

8. Патент RU 2089998, 1997 г.

9. Патент RU 2089041, 1997 г.

10. Патент SU 1777233, 1992 г.

11. Патент SU 792557, 1980 г.

12. Патент SU 807482, 1981 г.

13. Патент SU 1788570, 1993 г.

14. Патент RU 2019023, 1994 г.

15. Патент RU 2019024, 1994 г.

16. Патент RU 2165673, 2001 г.

17. Патент SU 987800, 1983 г.

18. Патент SU 376871,1973 г.

19. Патент SU 536590, 1976 г.

20. Патент SU 587602, 1978 г.

21. Патент SU 813690, 1981 г.

22. Патент SU 813694, 1981 г.

23. Патент SU 815868, 1981 г.

24. Патент US 3,946,328, 1976 г.

25. Патент SU 785954, 1980 г.

26. Патент US 4,659,995, 1987 г.

27. Мошиц Г., Хорн П. Проектирование активных фильтров: Пер. с англ. – М.: Мир, 1984. – 320 с.

28. Справочник по расчету и проектированию ARC-схем / Букашкин С.А., Власов В.П., Змий Б.Ф. и др.; Под ред. А.А. Ланнэ. – М.: Радио и связь, 1984. – 368 с.

29. Digital Potentiometers in the Tasks of Settings Precision Analog RC-filters Taking into Account the Tolerances for Passive Components / D.Yu. Denisenko, Y.I. Ivanov, N.N. Prokopenko, N.A. Dmitrienko // 18th IEEE International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM'2017) proceedings in. June 29 - July 3, 2017. – Pp. 205-210 DOI: 10.1109/EDM.2017.7981741

1. Полосовой фильтр на двух операционных усилителях с независимой подстройкой основных параметров, содержащий вход (1) и выход (2) устройства, первый (3) дифференциальный операционный усилитель, выход которого соединен с выходом (2) устройства, первый (4), второй (5) и третий (6) последовательно соединённые резисторы, которые включены между выходом устройства (2) и общей шиной источников питания (7), четвёртый (8), пятый (9), шестой (10), седьмой (11) и восьмой (12) резисторы, а также первый (13) и второй (14) конденсаторы, каждый из которых содержит первый и второй выводы, причём общий узел первого (4) и второго (5) последовательно соединенных резисторов связан с инвертирующим входом первого (3) дифференциального операционного усилителя, отличающийся тем, что в схему введён дополнительный дифференциальный операционный усилитель (15), выход которого соединён с неинвертирующим входом первого (3) дифференциального операционного усилителя через последовательно соединенные седьмой (11) резистор и первый (13) конденсатор, общий узел которых связан с выходом первого (3) дифференциального операционного усилителя через дополнительный резистор (16), причем общий узел последовательно соединенных второго (5) и третьего (6) резисторов соединен с первым выводом второго (14) конденсатора, второй вывод которого соединен с общим узлом последовательно соединенных седьмого (11) резистора и первого (13) конденсатора, между входом (1) устройства и выходом дополнительного дифференциального операционного усилителя (15) включены последовательно соединенные четвертый (8) и пятый (9) резисторы, причем общий узел последовательно соединенных четвёртого (8) и пятого (9) резисторов соединён с инвертирующим входом дополнительного дифференциального операционного усилителя (15) и через восьмой (12) резистор связан с инвертирующим входом первого (3) дифференциального операционного усилителя, причём неинвертирующий вход дополнительного дифференциального операционного усилителя (15) подключён к общей шине источников питания (7), а неинвертирущий вход первого (3) дифференциального операционного усилителя связан с общей шиной источников питания через шестой (10) резистор.

2. Полосовой фильтр на двух операционных усилителях с независимой подстройкой основных параметров по п.1, отличающийся тем, что общий узел последовательно соединенных второго (5) и третьего (6) резисторов соединен с первым выводом второго (14) конденсатора через дополнительный повторитель напряжения (17) с высоким входным и низким выходным сопротивлением.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к средствам выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к области радиотехники, а также измерительной техники и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики (АЧХ) активного RC-фильтра (ARC-фильтра) для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала.

Изобретение относится к электротехнике и может быть использовано для защиты радиоэлектронной аппаратуры от электростатического разряда. Техническим результатом является разложение пикового выброса ЭСР на последовательность импульсов меньшей амплитуды за счет выбора параметров и длины линии.

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к радиотехнике. Технический результат заключается в обеспечении высокого быстродействия синтезатора частот при изменении выходной частоты за счет режима широкой полосы пропускания и снижения уровня фазовых шумов за счет режима узкой полосы пропускания в установившемся состоянии системы ФАПЧ.

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве устройства частотной селекции в современных системах связи и телекоммуникации.

Изобретение относится к радиоэлектронике. Технический результат заключается в получении схемы активного полосового фильтра с перестраиваемой режекцией.

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для согласования источника сигнала, например, с аналого-цифровыми преобразователями различного функционального назначения.

Изобретение относится к измерительной технике и может быть использовано, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к измерительной технике и может быть использовано, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к средствам выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к средствам выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к измерительной техники и может использоваться, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к области радиотехники, а также измерительной техники и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики (АЧХ) активного RC-фильтра (ARC-фильтра) для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала.

Изобретение относится к области радиотехники, а также измерительной техники и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики (АЧХ) активного RC-фильтра (ARC-фильтра) для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала.

Изобретение относится к области радиотехники. Технический результат заключается в упрощении процедуры настройки основных параметров ФНЧ, а также в увеличении гарантированного затухания амплитудно-частотной характеристики за пределами рабочей полосы частот при низких значениях его выходных сопротивлений.

Изобретение относится к области радиотехник. Технический результат заключается в увеличении крутизны амплитудно-частотной характеристики (АЧХ) ФНЧ в переходной области и увеличении затухания АЧХ в полосе задерживания.

Изобретение относится к измерительной техники. Технический результат заключается в увеличение гарантированного затухания амплитудно-частотной характеристики активного RC-фильтра для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала, что обеспечивается за счет симметричного дифференциального входа.

Изобретение относится к средствам радиотехники и связи и может быть использовано в качестве интерфейса для выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в обеспечении независимой подстройки трех основных параметров АЧХ – частоты полюса (ωp), затухания полюса (dp), а также коэффициента передачи в полосе пропускания (М). Фильтр включает первый и второй дифференциальные усилители, конденсаторы и резисторы, соединенные между собой таким образом, чтобы при изменении сопротивлений четвертого и шестого резисторов изменяется наклон ФЧХ в области частоты полюса и подъем АЧХ на этой частоте При этом частота полюса остается неизменной. При настройке затухания полюса изменяются частоты, на которых фазовый сдвиг составляет -135 и -225 град. При изменении коэффициента М передачи на центральной частоте с помощью сопротивлений первого и пятого резисторов изменяется только общий уровень АЧХ, при этом ФЧХ не изменяется. 5 ил.
Наверх