Полосовой фильтр второго порядка с независимой подстройкой основных параметров

Изобретение относится к средствам выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в обеспечении независимой подстройки трех основных параметров АЧХ – частоты полюса (ωp), затухания полюса (dp), а также коэффициента передачи в полосе пропускания (М). Полосовой фильтр второго порядка с независимой подстройкой основных параметров содержит первый и второй дифференциальные операционные усилители, резисторы и конденсаторы, причем обеспечивается фазовый сдвиг за счет использования второго и третьего резисторов, при изменении сопротивлений первого, пятого и восьмого резисторов изменяется наклон ФЧХ в области частоты полюса и изменяется подъем АЧХ на этой частоте, а также при изменении коэффициента М передачи на центральной частоте с помощью изменения сопротивления четвертого резистора изменяется только уровень АЧХ, при этом ФЧХ не изменяется. 5 ил.

 

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Полосовые АRC-фильтры (ПФ) относятся к числу достаточно распространенных аналоговых устройств, определяющих качественные показатели многих радиотехнических систем, в том числе для цифровой обработки сигналов [1-28].

Ближайшим прототипом заявляемого устройства является полосовой АRC-фильтр по патенту RU 2150782 «Полосовой ARC-фильтр с понижением частоты полюса», опубл.: 10.06.2000. Он содержит (фиг. 1) вход 1 и выход 2 устройства, первый 3 дифференциальный операционный усилитель, выход которого соединен с выходом 2 устройства, первый 4, второй 5 и третий 6 последовательно соединённые резисторы, которые включены между выходом устройства 2 и общей шиной источников питания 7, четвёртый 8, пятый 9, шестой 10, седьмой 11 и восьмой 12 резисторы, а также первый 13 и второй 14 конденсаторы, причём общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 дифференциального операционного усилителя, а общий узел второго 5 и третьего 6 последовательно соединенных резисторов связан с неинвертирующим входом первого 3 дифференциального операционного усилителя через шестой 10 резистор.

Существенный недостаток ARC-фильтра-прототипа фиг. 1, а также других известных фильтров рассматриваемого класса [1-28], состоит в том, что в процессе подстройки его одного параметра, например, затухания или частоты полюса, изменяется третий важный параметр амплитудно-частотной характеристики (АЧХ) – коэффициент передачи в полосе пропускания. Это значительно усложняет производство и настройку (например, с помощью микросхем цифровых потенциометров [29] или лазерной подгонки) ARC-фильтров данного класса.

Основная задача предполагаемого изобретения состоит в создании схемы полосового АRC-фильтра, которая обеспечивает независимую подстройку трех основных параметров АЧХ – частоты полюса (ωp), затухания полюса (dp), а также коэффициента передачи в полосе пропускания (М).

Поставленная задача достигается тем, что в полосовом ARC-фильтре фиг. 1, содержащем вход 1 и выход 2 устройства, первый 3 дифференциальный операционный усилитель, выход которого соединен с выходом 2 устройства, первый 4, второй 5 и третий 6 последовательно соединённые резисторы, которые включены между выходом устройства 2 и общей шиной источников питания 7, четвёртый 8, пятый 9, шестой 10, седьмой 11 и восьмой 12 резисторы, а также первый 13 и второй 14 конденсаторы, причём общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 дифференциального операционного усилителя, а общий узел второго 5 и третьего 6 последовательно соединенных резисторов связан с неинвертирующим входом первого 3 дифференциального операционного усилителя через шестой 10 резистор, предусмотрены новые элементы и связи – в схему введён дополнительный дифференциальный операционный усилитель 15, выход которого соединён с общей шиной источников питания 7 через последовательно соединенные седьмой 11 резистор и второй 14 конденсатор, причём общий узел последовательно соединенных седьмого 11 резистора и второго 14 конденсатора связан с неинвертирующим входом первого 3 дифференциального операционного усилителя через первый 13 конденсатор и через дополнительный резистор 16 подключён к его выходу, между входом 1 устройства и выходом дополнительного дифференциального операционного усилителя 15 включены последовательно соединенные четвёртый 8 и пятый 9 резисторы, общий узел которых соединён с инвертирующим входом дополнительного дифференциального операционного усилителя 15 и через восьмой 12 резистор связан с инвертирующим входом первого 3 дифференциального операционного усилителя, причём неинвертирующий вход дополнительного дифференциального операционного усилителя 15 соединён с общей шиной источников питания 7.

На чертеже фиг. 1 показана схема ПФ-прототипа, а на чертеже фиг. 2 – схема заявляемого устройства в соответствии с формулой изобретения.

На чертеже фиг. 3 приведены амплитудно-частотные и фазо-частотные характеристики заявляемого полосового фильтра при подстройке частоты полюса ωp.

На чертеже фиг. 4 показаны амплитудно-частотные и фазо-частотные характеристики заявляемого полосового фильтра при подстройке затухания полюса dp.

На чертеже фиг. 5 представлены амплитудно-частотные и фазо-частотные характеристики заявляемого полосового фильтра при подстройке коэффициента передачи M.

Полосовой фильтр второго порядка с независимой подстройкой основных параметров фиг. 2 содержит вход 1 и выход 2 устройства, первый 3 дифференциальный операционный усилитель, выход которого соединен с выходом 2 устройства, первый 4, второй 5 и третий 6 последовательно соединённые резисторы, которые включены между выходом устройства 2 и общей шиной источников питания 7, четвёртый 8, пятый 9, шестой 10, седьмой 11 и восьмой 12 резисторы, а также первый 13 и второй 14 конденсаторы, причём общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 дифференциального операционного усилителя, а общий узел второго 5 и третьего 6 последовательно соединенных резисторов связан с неинвертирующим входом первого 3 дифференциального операционного усилителя через шестой 10 резистор. В схему введён дополнительный дифференциальный операционный усилитель 15, выход которого соединён с общей шиной источников питания 7 через последовательно соединенные седьмой 11 резистор и второй 14 конденсатор, причём общий узел последовательно соединенных седьмого 11 резистора и второго 14 конденсатора связан с неинвертирующим входом первого 3 дифференциального операционного усилителя через первый 13 конденсатор и через дополнительный резистор 16 подключён к его выходу, между входом 1 устройства и выходом дополнительного дифференциального операционного усилителя 15 включены последовательно соединенные четвёртый 8 и пятый 9 резисторы, общий узел которых соединён с инвертирующим входом дополнительного дифференциального операционного усилителя 15 и через восьмой 12 резистор связан с инвертирующим входом первого 3 дифференциального операционного усилителя, причём неинвертирующий вход дополнительного дифференциального операционного усилителя 15 соединён с общей шиной источников питания 7.

Рассмотрим работу схемы фиг. 2.

Свойства схемы классического полосового фильтра второго порядка, в том числе схемы фиг. 2, определяются его передаточной функцией [28]

F(s)= U вых. (s) U вх. (s) =М s d p ω p s 2 +s d p ω p + ω p 2 ,

где М – коэффициент передачи фильтра на центральной частоте; ωp – частота полюса; dp – затухание полюса.

Коэффициенты передаточной функции предлагаемой схемы полосового фильтра определяются по выражениям:

- коэффициент передачи

, (1)

- частота полюса

, (2)

- затухание полюса

d p = 1+ R 6 R 5 R 10 R 11 R 16 R 11 + R 16 × ×[ ( C 14 C 13 + C 13 C 14 ) 1 R 10 R 5 R 5 + R 6 + C 13 C 14 ( 1 R 11 + 1 R 16 )+ R 9 R 12 1 R 11 C 13 C 14 ( 1+ R 4 R 5 + R 6 ) C 13 C 14 1 R 16 ]. (3)

где R 4 , R 5 , R 6 , R 8 , R 9 , R 10 , R 11 , R 12 , R 16 - сопротивления первого 4, второго 5, третьего 6, четвертого 8, пятого 9, шестого 10, седьмого 11, восьмого 12, и дополнительного 16 резисторов соответственно, C 13 , C 14 - емкости первого 13 и второго 14 конденсаторов соответственно.

Независимая настройка параметров ПФ фиг. 2 возможна тогда, когда при настройке последующего параметра схемы не потребуется изменять сопротивления резисторов, определяющие уже настроенный параметр. Из анализа полученных формул для ωp, dp, М следует, что в предлагаемом ПФ фиг. 2 такая настройка осуществима в следующей последовательности:

Первый этап: настраивается частота полюса ωр путем изменения сопротивлений второго 5 и третьего 6 резисторов (R5 и R6). Далее номиналы этих резисторов фиксируются.

Второй этап: настраивается затухание полюса dр путем изменения сопротивлений первого 4 (R4), пятого 9 (R9) и восьмого 12 (R12) резисторов. На втором этапе сопротивления второго 5 и третьего 6 резисторов (R5 и R6) не изменяются.

Третий этап: настраивается коэффициент передачи М путем изменения сопротивления четвертого 8 (R8) резистора. На этом этапе сопротивления других резисторов не изменяются.

Следует заметить, что другие известные схемы ПФ [1-28], выполненные на двух операционных усилителях, данным свойством не обладают.

Эффективность рассмотренного выше алгоритма настройки ПФ фиг. 2 подтверждаются результатами компьютерного моделирования (фиг. 3 - фиг. 5).

При моделировании схемы фиг. 2 собственная частота полюса RC-цепи

f RC = 1 2π 1 C 13 C 14 1 R 10 ( 1 R 11 + 1 R 16 )

была выбрана равной 1000 Гц. В рассматриваемой схеме ПФ при любом соотношении второго 5 и третьего 6 резисторов (R5 и R6) частота полюса фильтра будет всегда ниже частоты полюса RC-цепи.

По виду ФЧХ фиг. 3 можно судить, что частота полюса ωр, на которой фазовый сдвиг равен -1800, изменяется за счет второго 5 и третьего 6 резисторов (R5 и R6) в относительно широких пределах.

По виду ФЧХ фиг. 4 можно установить, что при изменении сопротивлений первого 4 (R4), пятого 9 (R9) и восьмого 12 (R12) резисторов изменяется наклон ФЧХ в области частоты полюса и изменяется подъем АЧХ на этой частоте. При этом частота полюса остается неизменной (ωр=const). При настройке затухания полюса изменяются частоты, на которых фазовый сдвиг составляет -1350 и -2250.

При изменении коэффициента М передачи на центральной частоте с помощью изменения сопротивления четвертого 8 (R8) резистора изменяется только общий уровень АЧХ, при этом ФЧХ не изменяется – фиг. 5.

Таким образом, предлагаемое устройство имеет существенные преимущества в сравнении с прототипом – обеспечивает независимую подстройку основных параметров.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент SU 296228, 1971 г.

2. Патент SU 964977, 1982 г.

3. Патент SU 1629960, 1991 г.

4. Патент SU 1755364, 1992 г.

5. Патент SU 438095, 1974 г.

6. Патент RU 2154337, 2000 г.

7. Патент RU 2150782, 2000 г.

8. Патент RU 2089998, 1997 г.

9. Патент RU 2089041, 1997 г.

10. Патент SU 1777233, 1992 г.

11. Патент SU 792557, 1980 г.

12. Патент SU 807482, 1981 г.

13. Патент SU 1788570, 1993 г.

14. Патент RU 2019023, 1994 г.

15. Патент RU 2019024, 1994 г.

16. Патент RU 2165673, 2001 г.

17. Патент SU 987800, 1983 г.

18. Патент SU 376871,1973 г.

19. Патент SU 536590, 1976 г.

20. Патент SU 587602, 1978 г.

21. Патент SU 813690, 1981 г.

22. Патент SU 813694, 1981 г.

23. Патент SU 815868, 1981 г.

24. Патент US 3,946,328, 1976 г.

25. Патент SU 785954, 1980 г.

26. Патент US 4,659,995, 1987 г.

27. Мошиц Г., Хорн П. Проектирование активных фильтров: Пер. с англ. – М.: Мир, 1984. – 320 с.

28. Справочник по расчету и проектированию ARC-схем / Букашкин С.А., Власов В.П., Змий Б.Ф. и др.; Под ред. А.А. Ланнэ. – М.: Радио и связь, 1984. – 368 с.

29. Digital Potentiometers in the Tasks of Settings Precision Analog RC-filters Taking into Account the Tolerances for Passive Components / D.Yu. Denisenko, Y.I. Ivanov, N.N. Prokopenko, N.A. Dmitrienko // 18th IEEE International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM'2017) proceedings in. June 29 - July 3, 2017. – Pp. 205-210 DOI: 10.1109/EDM.2017.7981741


Полосовой фильтр второго порядка с независимой подстройкой основных параметров, содержащий вход (1) и выход (2) устройства, первый (3) дифференциальный операционный усилитель, выход которого соединен с выходом (2) устройства, первый (4), второй (5) и третий (6) последовательно соединённые резисторы, которые включены между выходом устройства (2) и общей шиной источников питания (7), четвёртый (8), пятый (9), шестой (10), седьмой (11) и восьмой (12) резисторы, а также первый (13) и второй (14) конденсаторы, причём общий узел первого (4) и второго (5) последовательно соединенных резисторов связан с инвертирующим входом первого (3) дифференциального операционного усилителя, а общий узел второго (5) и третьего (6) последовательно соединенных резисторов связан с неинвертирующим входом первого (3) дифференциального операционного усилителя через шестой (10) резистор, отличающийся тем, что в схему введён дополнительный дифференциальный операционный усилитель (15), выход которого соединён с общей шиной источников питания (7) через последовательно соединенные седьмой (11) резистор и второй (14) конденсатор, причём общий узел последовательно соединенных седьмого (11) резистора и второго (14) конденсатора связан с неинвертирующим входом первого (3) дифференциального операционного усилителя через первый (13) конденсатор и через дополнительный резистор (16) подключён к его выходу, между входом (1) устройства и выходом дополнительного дифференциального операционного усилителя (15) включены последовательно соединенные четвёртый (8) и пятый (9) резисторы, общий узел которых соединён с инвертирующим входом дополнительного дифференциального операционного усилителя (15) и через восьмой (12) резистор связан с инвертирующим входом первого (3) дифференциального операционного усилителя, причём неинвертирующий вход дополнительного дифференциального операционного усилителя (15) соединён с общей шиной источников питания (7).



 

Похожие патенты:

Изобретение относится к области радиотехники, а также измерительной техники и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики (АЧХ) активного RC-фильтра (ARC-фильтра) для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала.

Изобретение относится к электротехнике и может быть использовано для защиты радиоэлектронной аппаратуры от электростатического разряда. Техническим результатом является разложение пикового выброса ЭСР на последовательность импульсов меньшей амплитуды за счет выбора параметров и длины линии.

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к радиотехнике. Технический результат заключается в обеспечении высокого быстродействия синтезатора частот при изменении выходной частоты за счет режима широкой полосы пропускания и снижения уровня фазовых шумов за счет режима узкой полосы пропускания в установившемся состоянии системы ФАПЧ.

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве устройства частотной селекции в современных системах связи и телекоммуникации.

Изобретение относится к радиоэлектронике. Технический результат заключается в получении схемы активного полосового фильтра с перестраиваемой режекцией.

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для согласования источника сигнала, например, с аналого-цифровыми преобразователями различного функционального назначения.

Изобретение относится к технике связи и может быть использовано в системах передачи данных с адаптивной коррекцией сигналов для выбора параметра алгоритма коррекции.

Изобретение относится к области радиотехники и связи и может использоваться в устройствах фильтрации радиосигналов, телевидении, радиолокации. Техническим результатом является повышение добротности амплитудно-частотной характеристики избирательного усилителя и его коэффициента усиления по напряжению на частоте квазирезонанса fo.

Изобретение относится к измерительной техники и может использоваться, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к области радиотехники, а также измерительной техники и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики (АЧХ) активного RC-фильтра (ARC-фильтра) для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала.

Изобретение относится к области радиотехники, а также измерительной техники и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики (АЧХ) активного RC-фильтра (ARC-фильтра) для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала.

Изобретение относится к области радиотехники. Технический результат заключается в упрощении процедуры настройки основных параметров ФНЧ, а также в увеличении гарантированного затухания амплитудно-частотной характеристики за пределами рабочей полосы частот при низких значениях его выходных сопротивлений.

Изобретение относится к области радиотехник. Технический результат заключается в увеличении крутизны амплитудно-частотной характеристики (АЧХ) ФНЧ в переходной области и увеличении затухания АЧХ в полосе задерживания.

Изобретение относится к измерительной техники. Технический результат заключается в увеличение гарантированного затухания амплитудно-частотной характеристики активного RC-фильтра для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала, что обеспечивается за счет симметричного дифференциального входа.

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к вычислительной технике, в частности к частотно-импульсным вычислительным устройствам. Технический результат заключается в повышении точности преобразования устройства.
Наверх