Электролизер для получения жидких металлов электролизом расплавов

Изобретение относится к электролизерам для производства жидких металлов, в частности алюминия, электролизом расплавленных солей. Электролизер содержит корпус, подину, крышку, установленные вертикально или наклонно малорасходуемые полые перфорированные и/или открыто пористые электроды, подсоединенные к источнику постоянного тока, при этом в электродах выполнены внутренние каналы для транспортировки по ним продуктов электролиза. Электроды выполнены в поперечном сечении в виде прямоугольника, закреплены в крышке электролизера и/или в углублениях корпуса и подины, причем в подине катодной частью, и соединены от 1 до 100 параллельных рядов с последовательно соединенными биполярными электродами в ряду от 2 до 100, при расстоянии между электродами от 0,5 до 5 см, а от боковой поверхности электрода до боковой стенки электролизера от 0,01 до 1 см, при этом каждый ряд эквипотенциальных электродов соединен с накопителем металла, расположенным в нижней части электролизера. Обеспечивается увеличение удельной производительности, снижение удельного расхода электроэнергии и массы токоподводящей ошиновки. 2 з.п. ф-лы, 13 ил., 1 табл.

 

Изобретение относится к цветной металлургии, а именно к устройствам для производства металлов электролизом расплавленного электролита, в частности алюминия. Получаемыми металлами помимо алюминия могут быть медь, магний, литий, натрий, свинец.

Используемые в промышленности аппараты для производства алюминия электролизом имеют следующие недостатки: низкая производительность, отнесенная к единице площади, занимаемой электролизером; высокий удельный расход электроэнергии на единицу массы полученного металла; выделение экологически вредных веществ в атмосферу, большие трудозатраты.

Известно изобретение (Патент РФ №2101392, С25С 3/06, опубл. 01.10.1998), согласно которому множество инертных анодов расположено вертикально внутри множества трубчатых катодов, выполненных из электронно-проводящего малорасходуемого материала. При пропускании постоянного электрического тока через параллельно подключенные электроды на катодах выделяется и стекает вниз жидкий алюминий, а на анодах выделяется и поднимается вверх газообразный кислород.

Вертикальное расположение электродов значительно увеличивает их рабочую площадь, что позволяет повысить производительность электролизеров, отнесенную к занимаемой ими площади. Однако описанная конфигурация электродов не обеспечивает наиболее плотного расположения электродов в электролизере, что препятствует достижению высокого значения производительности на единицу занимаемой им площади.

Наиболее близким по технической сущности и достигаемому результату к заявляемому электролизеру для получения жидких металлов электролизом расплавов является изобретение (Патент РФ №2275443, С25С 3/06, опубл. 27.04.2006). Изобретение касается установки для получения металлов, в частности алюминия, электролизом расплавленных солей и способа установки электролизных ванн. Многополярная электролизная ванна включает корпус, подину, крышку и установленные вертикально или наклонно и параллельно относительно друг друга катоды и малорасходуемые аноды, подсоединенные к источнику постоянного тока, при этом катоды или их поверхность выполнены из смачиваемого получаемым металлом материала. В электродах выполнены углубления и внутренние каналы для транспортировки по ним продуктов электролиза, верхней частью аноды закреплены в крышке. Аноды и катоды выполнены в поперечном сечении в виде шестиугольника с острыми или скругленными углами, при этом более половины площади боковой поверхности каждого из электродов обращено к электроду противоположного знака, и одноименные электроды образуют цепочки, соединенные параллельно. Крышка выполнена из независимо открывающихся секций, а ее нижняя поверхность защищена неэлектропроводным и стойким к воздействию электролита и продуктов электролиза материалом.

Использование прототипа не позволяет достигнуть высоких значений производительности на единицу занимаемой электролизером площади. Использование шестиугольника в качестве геометрического основания электрода не позволяет добиться максимально эффективного использования площади, занимаемой электролизной ванной, т.к. лишь 4 из 6 граней могут быть направлены к электроду противоположного знака. Недостатком параллельного соединения электродов в описанной электролизной ванне является большая масса токоподводящих шин.

Задачей изобретения является создание конструкции электролизера, обладающей уменьшенной массой ошиновки и позволяющей получать расплавленные металлы с высокой производительностью на единицу занимаемой ею площади и высокой энергетической эффективностью. Предлагаемая конструкция может быть использована для получения металлов (алюминия, магния, свинца и т.д.), плотность которых выше плотности расплава, в состав которого входит разлагаемое соединение.

Технический результат заключается в увеличении производительности, отнесенной к единице площади, в снижении удельного расхода электроэнергии, в снижении массы токоподводящей ошиновки.

Поставленная задача достигается тем, что электролизер для получения жидких металлов электролизом расплавов, включающий корпус, подину, крышку, установленные вертикально или наклонно малорасходуемые полые перфорированные и/или открыто пористые электроды, подсоединенные к источнику постоянного тока, при этом в электродах выполнены внутренние каналы для транспортировки по ним продуктов электролиза, согласно изобретению электроды выполнены в поперечном сечении в виде прямоугольника, закреплены в крышке электролизера и/или в углублениях корпуса и подины, причем в подине катодной частью, при этом электроды соединены от 1 до 100 параллельных рядов с последовательно соединенными биполярными электродами в ряду от 2 до 100, при расстоянии между электродами от 0,5 до 5 см, а от боковой поверхности электрода до боковой стенки электролизера от 0,01 до 1 см, при этом каждый ряд эквипотенциальных электродов соединен с накопителем металла, расположенным в нижней части электролизера. Электроды снабжены керамическими трубками, стойкими к кислороду. В крышке расположена полость для размещения в ней материалов, например глинозема, и отверстия для эвакуации газов.

Расстояние между электродами выбирается исходя из наличия или отсутствия взвесей (суспензий), заполняющих межэлектродный зазор, и наличия конвекции в электролите, и может составлять от 0,5 до 5 см (при использовании расплавов, не содержащих взвесей).

Электроды могут располагаться вертикально или наклонно. Наклон электродов может составлять от 1° до 45° от вертикали, что обеспечит более эффективную эвакуацию продуктов электролиза в электродные каналы под действием градиентов давления и силы гравитации.

В предложенной конструкции электролизера электролиз осуществляется между обращенными друг к другу наклонными или вертикальными малорасходуемыми электродами. Предпочтительными являются электроды с развитой поверхностью с целью уменьшения плотности тока.

Продукты электролиза выделяются на границе электрод-электролит, а затем эвакуируются через каналы внутри тела электрода. Катодные и анодные поверхности имеют отверстия (каналы) для отвода соответствующих продуктов электролиза. В этом случае продукты электролиза - к примеру, кислород на анодной поверхности и алюминий на катодной - удаляются из зоны реакции через полости в структуре электродов: кислород, поднимаясь вверх внутри анодной полости и металл, например алюминий, стекая вниз внутри катодной полости, вследствие разности плотностей алюминия и электролита, сил поверхностного натяжения на границе поверхности электродов, и гравитации. Внутренние каналы катодов используются для стекания металла в накопитель. Допускается подключение к катодным каналам вакуума. Анодный газ эвакуируется из анодной полости по керамическим трубкам в верхней части анода. Допускается подключение к керамическим трубкам вакуума.

Электроды удерживаются путем их фиксации в разделенной на секции крышке электролизера и/или в специальных углублениях корпуса и подины. Таким образом, можно производить работы по замене электродов или локальному ремонту электролизных ванн, открывая только нужную секцию. Нижняя часть крышки выполнена из стойкого к воздействию выделяемых тепла, паров и газов материала, такого как огнеупорный высокоглиноземистый бетон.

Прямоугольная форма поперечного сечения электрода позволяет направить к электроду противоположного знака более 95% площади боковой поверхности.

Наличие системы накопителей металла в нижней части электролизера исключает возможность замыкания на металле.

Применение последовательно-параллельного соединения электродов позволяет снизить массу токоподводящей ошиновки пропорционально количеству электродов в каждом ряду. При количестве 20 электродов масса снижается в 20 раз.

При установке более 100 рядов и/или более 100 электродов в каждом ряду управление электролизером затрудняется в связи с его большими размерами. Использование такого электролизера становится нецелесообразным.

Расстояние от электрода до боковой стенки электролизера, не превышающее 1 см, является достаточным для уменьшения величины «байпасных» токов в электролизере.

Установка электродов в крышке электролизера и/или в углублениях корпуса и подины электролизера позволяет исключить их движение относительно друг друга и корпуса электролизера и тем самым зафиксировать необходимое межэлектродное расстояние.

При угле наклона электродов к вертикали более 45° затрудняется эвакуация продуктов электролиза вследствие сил гравитации и давления.

Использование в электродах керамических трубок обусловлено необходимостью эвакуации газообразных продуктов электролиза из электролизера.

Скругленные углы электродов позволяют добиться более равномерного токораспределения и исключения высокой плотности тока в углах электродов.

При расстоянии между электродами менее 0,5 см наблюдается перемешивание продуктов электролиза, что ведет к уменьшению выхода по току. При расстоянии более 5 см увеличивается величина падения напряжения в межэлектродном зазоре.

Предлагаемая конструкция поясняется чертежами, где:

на фиг. 1 показан электролизер для получения жидких металлов электролизом расплавов в сборе;

на фиг. 2 - вид сверху на взаимное расположение электродов в исполнении с двумя параллельными рядами вертикальных электродов и четырьмя последовательными электродами в каждом ряду;

на фиг. 3 - связь электродов с системой эвакуации продуктов электролиза в поперечном разрезе электролизера;

на фиг. 4 - продольный разрез электролизера;

на фиг. 5 - внутренняя полость катодов в продольном разрезе электролизера;

на фиг. 6 - внутренняя полость анодов в продольном разрезе электролизера;

на фиг. 7 - система загрузки материалов в поперечном разрезе электролизера;

на фиг. 8 - биполярный электрод со стороны катодной поверхности;

на фиг. 9 - биполярный электрод со стороны анодной поверхности;

на фиг. 10 - вид сверху на биполярный электрод в разрезе

на фиг. 11 - поперечный разрез биполярного электрода в исполнении с перфорированными катодной и анодной поверхностями, с наклонными и вертикальными каналами, со скругленными углами;

на фиг. 12 - поперечный разрез электролизера в работе.

на фиг. 13 - продольный разрез корпуса электролизера.

На фиг. 1 изображен электролизер для получения жидких металлов электролизом расплавов в сборе, состоящий из корпуса 1, крышки, разделенной на независимо открывающиеся секции 2, накопителей металла 3. Ток к электролизеру подводится посредством токоподводящей шины 4. Металл из накопителей металла транспортируется по трубкам 5. В крышке электролизера имеются отверстия 6 для загрузки материалов, а также отверстия 7 для эвакуации газов, образующихся при электролизе. Нижняя поверхность крышки выполнена из огнеупорного материала, например бетона.

На фиг. 2 показан вид сверху на взаимное расположение электродов в электролизере в разрезе. В представленном исполнении электролизер включает 2 параллельно соединенных ряда электродов. Каждый ряд электродов включает концевой анод 8, концевой катод 9 и два биполярных электрода 10. Таким образом, в каждом ряду электроды соединены последовательно. Соседние электроды из разных рядов образуют эквипотенциальную цепочку, соединенную с накопителем металла системой переточных каналов.

Фиг. 3 иллюстрирует связь электродов с системой эвакуации продуктов электролиза. Каждый катод связан с накопителем металла, а каждый анод с отверстием для эвакуации газов. В крышке, разделенной на независимо открывающиеся секции, имеется полость 12 для размещения материалов, например глинозема.

Фиг. 4 демонстрирует продольный разрез электролизера, а также два соседних эквипотенциальных электрода, расположенных в корпусе. Каждый концевой анод и каждый биполярный электрод соединен с отверстием для эвакуации газов в крышке, разделенной на независимо открывающиеся секции, посредством керамической трубки 13.

На фиг. 5 изображен продольный разрез электролизера, демонстрирующий внутреннюю полость 14 катодной части биполярного электрода. В этой полости происходит транспортировка жидкого металла до вертикальной трубки 15, а затем в накопитель металла.

На фиг. 6 изображен продольный разрез электролизера, демонстрирующий внутреннюю полость 16 анодной части биполярного электрода. В этой полости происходит транспортировка анодных газов до керамической трубки, соединяющей электрод с отверстием для эвакуации газов.

На фиг. 7 изображен поперечный разрез, демонстрирующий систему загрузки материалов в электролизер. Материал, например глинозем, заполняет полость для размещения материалов в крышке электролизера, поступая через отверстия для загрузки материалов. Затем через отверстие 17 материал поступает в межэлектродный зазор.

Фиг. 8 иллюстрирует внешний вид биполярного электрода со стороны катодной части. В данном исполнении биполярный электрод имеет перфорированную катодную поверхность 18 и скругленные углы 19. Отверстия 20 служат для поступления жидких металлов, восстановленных на катодной поверхности биполярного электрода в полость внутри электрода и дальнейшей транспортировки в накопитель металла.

Фиг. 9 иллюстрирует внешний вид биполярного электрода со стороны анодной части. В данном исполнении биполярный электрод имеет перфорированную анодную поверхность 21. Отверстия 22 служат для поступления газов, образовавшихся на анодной поверхности биполярного электрода в полость внутри электрода и дальнейшей транспортировки в керамическую трубку.

На фиг. 10 изображен вид сверху на биполярный электрод в разрезе. Внутри катодной и анодной частей биполярного электрода имеются полости для транспортировки продуктов электролиза, а в нижней части катодной полости расположено отверстие 23, через которое жидкий металл стекает в накопитель металла.

На фиг. 11 изображен поперечный разрез биполярного электрода. В представленном исполнении отверстия в катодной и анодной поверхностях связаны с полостями внутри биполярного электрода посредством наклонных поперечных каналов 24 и 25 соответственно. Внутри керамической трубки анодной части биполярного электрода имеется вертикальный продольный канал 26 для транспортировки анодных газов. Вертикальная трубка в нижней части катода имеет вертикальный продольный канал 27 для транспортировки жидкого металла.

Фиг. 12 иллюстрирует вид сбоку на поперечный разрез электролизера в работе. Электролиз осуществляется в электролите 28 между электродами противоположного знака.

На фиг. 13 изображен продольный разрез корпуса электролизера, демонстрирующий углубления 29 для фиксации электродов в подине и в стенках электролизера.

Для самопроизвольной эвакуации металла внутренняя поверхность каналов должна смачиваться алюминием.

Работа электролизера заключается в электролитическом разложении оксида металла в межэлектродном зазоре на ионы кислорода и ионы металла, переносе ионов кислорода к анодной поверхности 21 биполярного электрода 10 со скругленными углами 19, либо к концевому аноду 8, переносе ионов металла к катодной поверхности 18 биполярного электрода 10, либо к концевому катоду 9. Восстановление жидкого металла осуществляется на границе катодной поверхности 18 и прикатодного слоя электролита 28 при совершении над электролизером электрической работы после загрузки в расположенные в крышке 2 отверстия 6 исходных материалов, нагрева электролизера до температуры на 5-20°С выше температуры ликвидуса используемого электролита и подключения шин 4 к источнику постоянного тока.

Вследствие окисления ионов кислорода, в прианодном слое электролита образуется газообразный кислород. После насыщения прианодного слоя электролита кислородом, на анодной поверхности 21 образуются пузыри. Под действием градиентов давления пузыри попадают в отверстия 22 анодной поверхности 21, после чего по наклонным или горизонтальным каналам 25 попадают во внутреннюю полость 16, откуда через канал 26 керамической трубки 13 эвакуируются из электролизера. Ионы металла восстанавливаются, образуя жидкий металл в прикатодном слое электролита. Капли жидкого металла под действием гравитации и градиентов давления проникают в отверстия 20 катодной поверхности 18, после чего по наклонным или горизонтальным каналам 24 попадают во внутреннюю полость 14, откуда через отверстие 23 по вертикальному каналу 27 стекают в накопитель металла 3. Окончательная эвакуация жидкого алюминия из электролизера происходит через трубки 5.

Процесс производства жидкого металла сопровождается непрерывным питанием электролизера необходимыми материалами (в т.ч. оксидом получаемого металла), через отверстие 6. Запас материалов поддерживается на необходимом уровне, заполняя пространство для размещения материалов 12. Непосредственно в межэлектродный зазор материалы поступают через отверстие 17.

Для обеспечения устойчивости, электроды фиксируются в углублениях 29 в подине 11 и в стенках корпуса 1.

Технический результат, на достижение которого направлено изобретение, представлен в таблице 1.

Удельная производительность электролизера превосходит удельную производительность прототипа более чем на 50%. Масса ошиновки электролизера была уменьшена по сравнению с прототипом (а также с электролизером с OA 200 кА) в 20 раз за счет применения последовательно-параллельного соединения электродов.

Заявленный электролизер обеспечивает значительное снижение удельного расхода электроэнергии на производство металла по сравнению с электролизером с OA 200 кА, благодаря снижению межэлектродного расстояния при использовании суспензии в качестве среды электролиза.

1. Электролизер для получения жидких металлов электролизом расплавов, содержащий корпус, подину, крышку, установленные вертикально или наклонно малорасходуемые полые перфорированные и/или открыто пористые электроды, подсоединенные к источнику постоянного тока, при этом в электродах выполнены внутренние каналы для транспортировки по ним продуктов электролиза, отличающийся тем, что электроды выполнены в поперечном сечении в виде прямоугольника, закреплены в крышке электролизера и/или в углублениях корпуса и подины, причем в подине - катодной частью, при этом электроды соединены в виде от 1 до 100 параллельных рядов с последовательно соединенными биполярными электродами в ряду от 2 до 100 при расстоянии между электродами от 0,5 до 5 см, а от боковой поверхности электрода до боковой стенки электролизера - от 0,01 до 1 см, при этом каждый ряд эквипотенциальных электродов соединен с накопителем металла, расположенным в нижней части электролизера.

2. Электролизер по п. 1, отличающийся тем, что электроды снабжены керамическими трубками, стойкими к кислороду.

3. Электролизер по п. 1, отличающийся тем, что в крышке выполнены полость для размещения в ней материалов в виде глинозема и отверстия для эвакуации газов.



 

Похожие патенты:

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита.

Изобретение относится к способу и устройству для рафинирования алюминия и его сплавов от электроположительных примесей. Устройство содержит контейнер с подиной, футерованной огнеупорными материалами, для размещения в нем расплавленного алюминиевого сплава с электроположительными примесями и расплавленного рафинированного алюминия, одну или несколько пористых мембран, пропитанных электролитом, непроницаемых для расплавленного алюминиевого сплава с электроположительными примесями и проницаемых для электролита и катионов алюминия, для разделения расплавленного алюминиевого сплава с электроположительными примесями, используемого в качестве анода с токоподводом, и расплавленного рафинированного алюминия в качестве катода с токоподводом и по крайней мере один МГД перемешиватель анодного расплава, установленный на границе раздела пористая мембрана - анодный расплав.

Изобретение относится к графитированному фасонному катодному устройству для получения алюминия. Катодное устройство содержит основной блок и графитированный катодный замедлительный блок.
Изобретение относится к способу электролитического получения алюмокремниевых сплавов -силуминов с использованием кремнезема и кремнеземсодержащих материалов, например, отработанной подины, содержащей большое количество кремнезема, глинозема и электролита, необходимых для электролиза.

Изобретение относится к очистке основного потока неочищенного газа из предприятия, например, по получению алюминия. Газоочистное устройство содержит множество газоочистных камер (34a-c), входную магистраль (32) для разделения основного потока неочищенного газа, текущего через нее, на множество отдельных фракционных потоков неочищенного газа для втекания во входы (46a-c) очистных камер и множество теплообменников (40a-c).

Изобретение относится к получению алюминия электролизом глинозема в расплаве фтористых солей и может быть использовано при технологическом контроле состава электролита методом количественного рентгенофазового анализа (РФА) калийсодержащего электролита с добавками кальция либо кальция и магния.

Изобретение относится к электролизерам для получения алюминия с верхним подводом тока, в частности к устройству отвода газов из-под подошвы самообжигающегося анода.

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. Способ включает нагрев подины, выполненной из катодных блоков с катодными блюмсами, электропроводным материалом, размещение на нем обожженных анодов, соединение анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера, пропускание электрического тока через электропроводный материал и регулирование токовой нагрузки обожженных анодов.

РЕФЕРАТ Изобретение относится к устройству для сбора твердых отходов и шлама из ванны электролизера для получения алюминия. Устройство содержит ковш для сбора корки, предназначенный для чистки анодных отверстий, подвижную вертикальную стойку, приводимую в движение первым приводом, раму, закрепленную на подвижной вертикальной стойке, и шарнирный черпак, при этом первый привод выполнен в виде гидроцилиндра, питаемого гидравлическим контуром, выполненным таким образом, что при приведении в движение черпака посредством второго привода давление масла в камере штока удерживается, по существу, постоянным, для удерживания нагрузки, соответствующей весу устройства для сбора, уменьшенной на заданную величину, предпочтительно, меньше 1000 даН, обычно от 200 до 600 даН.

Изобретение относится к системе и способу для выливки расплавленного алюминия из электролизера для получения алюминия. Система содержит контейнер, имеющий корпус, приспособленный для помещения в него расплавленного алюминия, и желоб, имеющий участок-основание, соединенный с корпусом контейнера, участок-наконечник, соприкасающийся с расплавом в электролизере, и канал, соединяющий участок-основание с участком-наконечником, для прохождения расплава в корпус контейнера, причем расплав в электролизере содержит расплавленный алюминий и электролит, и электрический источник, соединенный с электролизером и выполненный с возможностью подачи вспомогательного тока на желоб для создания вспомогательного электромагнитного поля по меньшей мере вблизи участка-наконечника желоба, обеспечивающего по меньшей мере частичное увеличение потока расплавленного алюминия в желоб при поступлении вспомогательного тока на желоб, находящийся в жидкостном сообщении с расплавом в электролизере.

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. В способе регулируют токовую нагрузку при определении перегрева поверхности подины путем непрерывного измерения температуры и токовой нагрузки по анодам и ниппелями, отключают анододержатели с максимально допустимой по технологии токовой нагрузкой или с неравномерным распределением тока по ниппелям анода, расположенного в районе «борт катодного кожуха - ближайший ниппель анода» и/или рядом стоящего анода, последовательно определив перегрев поверхности подины между соседними рядами анодов, отключают анододержатели с максимально допустимой токовой нагрузкой или с неравномерным распределением тока по ниппелям анода и/или близлежащих анодов в следующей последовательности: рядом стоящий анод - напротив стоящий анод - анод по диагонали, при этом покрывают подину слоем электропроводного материала под анодами, расположенными по периферии подины с площадью контакта покрытия от 50% до 90%, под рядом расположенными анодами площадь контакта составляет от 30% до 70%, под всеми оставшимися анодами - от 10% до 50%, и подключают электролизер на обжиг после достижения температуры поверхности его подины заданного по технологии значения. Обеспечивается снижение объема используемого электропроводного материала и равномерный нагрев подины до 900°С за 48 часов. 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способу получения алюминиево-кремниевых сплавов в электролизере для производства алюминия с использованием аморфного кремнийсодержащего оксидного сырья. Способ включает периодическую загрузку в расплав электролита фтористых солей, глинозема, аморфного кремнийсодержащего оксидного сырья и последующее восстановление оксидов алюминия и кремния, при этом в качестве аморфного кремнийсодержащего оксидного сырья используют микрокремнезем, получаемый в процессе очистки технологических газов при производстве кремния и кремнийсодержащих сплавов, который загружают в расплав электролита с использованием установок автоматического питания электролизера. В электролизере поддерживают увеличенное на 5÷30 вес.% количество расплава электролита, в расплав электролита вместе с микрокремнеземом вводят измельченный кварцит в количестве до 40% от веса микрокремнезема. Дополнительно микрокремнезем предварительно смешивают с глиноземом или фтористыми солями и загружают в расплав электролита, причем смешивание микрокремнезема с глиноземом осуществляют путем их совместной подачи в сухую адсорбционную газоочистку корпуса электролиза алюминия, затем полученную смесь загружают в расплав электролита в виде фторированного глинозема и фторированного микрокремнезема. Обеспечивается увеличение производительности электролизера по алюминиево-кремниевому сплаву, повышение выхода по току, улучшение качества алюминиево-кремниевого сплава. 4 з.п. ф-лы, 4 табл.

Изобретение относится к способу запуска электролизера для производства алюминия, имеющего катодный блок с верхней поверхностью. Способ включает размещение материала контактного сопротивления на верхней поверхности катодного блока, опускание множества анодов до упора в материал контактного сопротивления, заполнение электролизера и покрывание анодов твердым электролитным материалом, содержащим дробленый материал электролитной ванны, криолит или их смеси, подачу электрического тока на аноды для по меньшей мере частичного расплавления твердого электролитного материала и подъем анодов при достижении заданной глубины расплавленного электролитного материала. Обеспечивается сокращение рабочей нагрузки на подъемный кран и возможность увеличения вдвое числа электролизеров, запускаемых в течение заданного периода времени. 14 з.п. ф-лы, 2 табл., 6 ил.

Изобретение относится к способу определения криолитового отношения (КО) мольного отношения (NaF+KF)/AlF3) с добавками фторидов кальция магния и калия. Способ включает построение градуировочных характеристик по Na, F, Са, Mg с использованием отраслевых стандартных образцов (ОСО) состава электролита электролизеров производства алюминия, прошедших метрологическую аттестацию, а по K - с использованием синтетических образцов электролита, с установленной по процедуре приготовления погрешностью значения содержания калия в виде регрессионных зависимостей, при этом градуировочные характеристики для фтора, натрия, кальция, и магния строят в виде регрессионной зависимости: , j≠k≠I , где i - определяемый элемент, j - элемент, участвующий в поглощении (наложении) определяемого элемента, k – элемент, участвующий в возбуждении определяемого элемента, bi, ci - коэффициенты уравнения регрессии для i-го элемента, определяемые методом наименьших квадратов, с/имп., мас. % соответственно, Ii - измеренная интенсивность флуоресцентного излучения i-го элемента, имп./с, Ci - концентрация i-го калия, мас. %, Cj - концентрация j-го элемента матрицы, мас. %, pj - коэффициент коррекции перекрывания интенсивности, pj=0÷1; (1+M)i - коэффициент влияния матрицы, величину которого определяют по формуле: , где i - определяемый элемент, αj - коэффициент поглощения, величина которого рассчитывается по методу наименьших квадратов, (% масс.)-1; βk - коэффициент возбуждения, величина которого рассчитывается по методу наименьших квадратов; Ck - концентрация k-го элемента матрицы, масс. %; N - количество элементов, а градуировочную характеристику для калия строят в виде регрессионной зависимости: С=aI2+bI+с, где: а, b, с - коэффициенты уравнения регрессии для калия, определяемые методом наименьших квадратов, (с/имп.)2, с/имп., масс. % соответственно; I - измеренная интенсивность флуоресцентного излучения аналитической линии калия, имп/с; С - концентрация калия, масс. %. Градуировочную характеристику для определения Na строят с применением α и β коррекции по Al, а градуировочную характеристику для определения F строят с учетом наложения Na и применением β коррекции по Al. Обеспечивается достижение точности определения КО в электролите с добавкой К. 1 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к способу пуска алюминиевого электролизера с самообжигающимся анодом после капитального ремонта. Способ включает обжиг подины, заливку расплавленного электролита, электрическое подключение электролизера, снижение напряжения на электролизере до рабочего в пусковой период, загрузку содержащего соду сырья, фтористых солей и заливку жидкого алюминия. Снижение напряжения на электролизере до рабочего осуществляют одновременно при снижении уровня электролита и повышении уровня алюминия в электролизере, при этом общий уровень алюминия и электролита в электролизере поддерживают от 91 до 99% глубины шахты. Обеспечивается сокращение длительности и расхода электроэнергии пускового периода электролизера. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения сплава алюминий-скандий в условиях промышленного производства. Способ получения сплава на основе алюминия, содержащего 1-3 мас.% скандия, включает приготовление и расплавление смеси, содержащей фториды натрия, калия и алюминия, непрерывную подачу в расплав при температуре 800 – 950 0С оксида скандия в количестве, обеспечивающем поддержание оксида скандия в расплаве на уровне 1-8%, одновременное алюмотермическое восстановление скандия из его оксида и электролитическое разложение образующегося оксида алюминия, периодическую выгрузку полученного сплава с заданным составом и заливку расплавленного алюминия после выгрузки сплава в количестве, равном по массе выгруженному сплаву. Устройство для получения сплава содержит стальной кожух, футерованный изнутри огнеупорным кирпичом, с подиной и крышкой, анод, катод, графитовый тигель, размещенный на подовом графитовом блоке, который с установленным в него блюмсом является токоподводом к катоду, причем между внутренней футеровкой кожуха и внешней стороной тигля размещены нагревательные элементы, а в крышке установлен дозатор для непрерывной подачи оксида скандия и выполнено отверстие для периодической загрузки алюминия и периодической выгрузки полученного сплава. Изобретение позволяет получать сплав алюминий-скандий с заданным составом, обеспечивает высокую чистоту конечного продукта и высокий уровень извлечения скандия. 2 н. и 4 з.п. ф-лы, 1 ил., 5 пр.

Изобретение может быть использовано в химической технологии. Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства включает обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция, который промывают водой. В качестве фторсодержащего раствора используют раствор, полученный путем выщелачивания твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия - шламов газоочистки, пыли электрофильтров и отработанной угольной футеровки. Фторуглеродсодержащие отходы подают на обработку в соотношении Т:Ж=:(10-11) по отношению к 2-2,5% раствору гидроксида натрия. Обработку ведут при температуре выщелачиваемого раствора 65-85°С. Изобретение позволяет получить фторид кальция из твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия с содержанием фтора в твердой фазе от 12 до 25%. 1 з.п. ф-лы, 4 табл.
Изобретение относится к способу горячего ремонта локальных разрушений подины алюминиевого электролизера при электролитическом получении алюминия. Способ включает определение участка разрушения углеродистой подины, приготовление ремонтной смеси, заливку ремонтной смеси расплавленным алюминием с получением ремонтной массы, доставку ремонтной массы к месту разрушения, заполнение участка разрушения ремонтной массой, при этом в качестве ремонтной смеси используют неформованный оксид магния с композиционным покрытием на основе диборида титана. Обеспечивается снижение износа подины электролизера, что способствует повышению срока службы алюминиевого электролизера 7 з.п. ф-лы.

Настоящее изобретение относится к электролизеру для получения алюминия (варианты) и способу защиты боковой стенки электролизера для получения алюминия от воздействия электролита. Электролизер содержит анод, катод, отстоящий от анода, ванну расплавленного электролита в жидкостном сообщении с анодом и катодом, корпус электролизера, имеющий боковую стенку и подину и выполненный с возможностью удерживания ванны расплавленного электролита, при этом боковая стенка имеет поляризованную часть боковой стенки и неполяризованную часть боковой стенки, причем поляризованная часть боковой стенки и неполяризованная часть боковой стенки являются смежными друг с другом и находятся в жидкостном сообщении с ванной расплавленного электролита. Раскрыт также способ защиты боковой стенки электролизера для получения алюминия от воздействия электролита, включающий пропускание тока от анода через ванну расплавленного электролита к катоду в электролизере, подачу питающего материала в электролизер в месте, смежном с боковой стенкой электролизера, с возможностью удерживания питающего материала в желобе, образованном рядом с боковой стенкой, и сохранение боковой стенки в расплавленном электролите во время работы электролизера за счет подаваемого питающего материала, причем боковая стенка выполнена из по меньшей мере одного компонента, который присутствует в пределах примерно 95% от насыщения в ванне расплавленного электролита. Обеспечивается защита боковой стенке от воздействия электролита при эксплуатации электролизера. 5 н. и 19 з.п. ф-лы, 36 ил., 5 пр.
Наверх