Способ получения алюминиево-кремниевых сплавов в алюминиевых электролизерах

Изобретение относится к способу электролитического получения алюмокремниевых сплавов -силуминов с использованием кремнезема и кремнеземсодержащих материалов, например, отработанной подины, содержащей большое количество кремнезема, глинозема и электролита, необходимых для электролиза. Способ включает предварительную обработку измельченного алюмосиликатного сырья, содержащего отработанную подину, глинозем и электролит, механоактивацией как отдельно, так и в смеси с глиноземом, периодическую загрузку подготовленного сырья в электролизер и проведение электролиза расплава с образованием силумина непосредственно в ванне электролита. Обеспечиваются высокая скорость растворения сырья, снижение напряжения и расхода энергии и увеличение срока службы электролизера.

 

Изобретение относится к цветной металлургии, а именно к производству электролизом алюминий-кремниевых сплавов (силуминов), широко применяемых в промышленности.

Хорошо известен способ [Tabereaux А.Т., Мс Mihn С.J., Production of aluminium-silicon alloys from sand clay in Hall cells. Light Metals, 1978, p.209-222], согласно которому в электролизер, производящий алюминий, одновременно с основным сырьем - глиноземом загружается песок (кремнезем, SiO2). При использовании этой технологии растворение глинозема и особенно кремнезема происходит очень медленно, сопровождается появлением осадка на подине электролизера и, следовательно, повышением греющего напряжения, температуры электролиза, повышенным расходом энергии и, в качестве дополнительного следствия, наблюдается снижение срока службы алюминиевых электролизеров.

Наиболее близким по техническим данным является способ получения сплавов путем растворения муллитов, входящих в состав отработанной подины алюминиевых электролизеров [BJ⌀rn Moxnesl, Håvard Giklingl, Halvor Kvande2, Sverre Rolseth3 and Kjetil Straumsheiml.ADDITION OF REFRACTORIES FROM SPENT POTLINING TO ALUMINA REDUCTION CELLS TO PRODUCE Al-Si ALLOYS, Light Metals 2003 Edited by Paul N. Crepeau TMS (The Minerals, Metals & Materials Society), 2003]. Авторы загружали измельченный порошок отработанной подины совместно с порошком глинозема в промышленный электролизер. На электролизере с силой тока 115 кА загрузка порошка отработанного электролита, содержащего муллит, сопровождалась:

1. Образованием осадка на подине.

2. Повышением температуры до 1000°C.

3. Необходимостью уменьшения силы тока и, следовательно, производительности.

4. По предлагаемому способу исходное сырье, содержащее оксиды кремния, подвергается предварительной механической активации с целью уменьшения размеров зерна до 10-20 мкм и создания при этом кристаллической или псевдокристаллической структуры, содержащей дефекты. Химический потенциал такого кремнезема существенно выше. Высокий химический потенциал SiO2 ускоряет процесс растворения, как это хорошо известно в химической технологии.

Техническим результатом изобретения является изменение условий получения сплавов алюминий-кремний, при которых оксид кремния или соединения, содержащие оксид кремния, например муллит (3Al2O3·2SiO2), подвергаются предварительной обработке механоактивацией как отдельно, так и в смеси с глиноземом, основным сырьем, питающим электролизер.

От прототипа заявляемый способ отличается тем, что ускорение растворения исходного материала наблюдается при времени активации 5-60 секунд на планетарной мельнице с энерговооруженностью 50 g. Путем визуальных наблюдений установлено, что скорость растворения увеличивается в 2-3 раза, и при этом не наблюдается появление осадка.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Технический результат достигается тем, что в способе получения алюминиево-кремниевых сплавов в алюминиевых электролизерах, новым является то, что с целью повышения скорости растворения исходного алюмосиликатного сырья исходный продукт подвергается механоактивации с параметрами: размер зерна 10-30 мкм, время активации 5-60 с, энерговооруженность мельницы 20-50 g. Также новым является то, что механоактивации подвергается только силикатная часть загружаемой в ванну шихты, а также механоактивации подвергается шихтовая смесь, содержащая глинозем и кремнийсодержащее сырье, в качестве которого используют кремнезем, например чистый песок, либо силикатную часть подины алюминиевых электролизеров.

Сущность изобретения заключается в способе получения алюминиево-кремниевых сплавов путем подготовки сырья (глиноземно-кремнеземной смеси) с последующим электролизом в промышленных алюминиевых электролизерах криолито-алюмо-силикатных расплавов.

Подготовка сырья путем механоактивации в определенном параметрическом режиме показателей (размер зерна силикатного материала 5-25 мкм, время пребывания в мельнице 5-60 секунд, с энерговооруженностью последней 20-50 g) обеспечивает скорость растворения, в 2-3 раза большую, чем в режиме, используемом в прототипе. Применение механоактивации, новой технологии подготовки силикатного сырья обеспечит высокую скорость его растворения, меньшее напряжение и расход энергии, повышенный срок службы электролизера.

Способ получения алюминиево-кремниевых сплавов в алюминиевом электролизере, включающий подготовку загружаемой шихтовой смеси, содержащей алюмосиликатное сырье, включающее отработанную подину и отработанный электролит алюминиевого электролизера и глинозем, загрузку шихтовой смеси в электролизер с последующим электролизом в расплаве электролита в алюминиевом электролизере, отличающийся тем, что подготовку загружаемой шихтовой смеси осуществляют путем ее механоактивации в мельнице с энерговооруженностью 20-50 g и размером зерна 10-30 мкм при времени активации 5-60 с.



 

Похожие патенты:

Изобретение относится к очистке основного потока неочищенного газа из предприятия, например, по получению алюминия. Газоочистное устройство содержит множество газоочистных камер (34a-c), входную магистраль (32) для разделения основного потока неочищенного газа, текущего через нее, на множество отдельных фракционных потоков неочищенного газа для втекания во входы (46a-c) очистных камер и множество теплообменников (40a-c).

Изобретение относится к получению алюминия электролизом глинозема в расплаве фтористых солей и может быть использовано при технологическом контроле состава электролита методом количественного рентгенофазового анализа (РФА) калийсодержащего электролита с добавками кальция либо кальция и магния.

Изобретение относится к электролизерам для получения алюминия с верхним подводом тока, в частности к устройству отвода газов из-под подошвы самообжигающегося анода.

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. Способ включает нагрев подины, выполненной из катодных блоков с катодными блюмсами, электропроводным материалом, размещение на нем обожженных анодов, соединение анододержателей установленных обожженных анодов с анодными шинами анодной ошиновки электролизера, пропускание электрического тока через электропроводный материал и регулирование токовой нагрузки обожженных анодов.

РЕФЕРАТ Изобретение относится к устройству для сбора твердых отходов и шлама из ванны электролизера для получения алюминия. Устройство содержит ковш для сбора корки, предназначенный для чистки анодных отверстий, подвижную вертикальную стойку, приводимую в движение первым приводом, раму, закрепленную на подвижной вертикальной стойке, и шарнирный черпак, при этом первый привод выполнен в виде гидроцилиндра, питаемого гидравлическим контуром, выполненным таким образом, что при приведении в движение черпака посредством второго привода давление масла в камере штока удерживается, по существу, постоянным, для удерживания нагрузки, соответствующей весу устройства для сбора, уменьшенной на заданную величину, предпочтительно, меньше 1000 даН, обычно от 200 до 600 даН.

Изобретение относится к системе и способу для выливки расплавленного алюминия из электролизера для получения алюминия. Система содержит контейнер, имеющий корпус, приспособленный для помещения в него расплавленного алюминия, и желоб, имеющий участок-основание, соединенный с корпусом контейнера, участок-наконечник, соприкасающийся с расплавом в электролизере, и канал, соединяющий участок-основание с участком-наконечником, для прохождения расплава в корпус контейнера, причем расплав в электролизере содержит расплавленный алюминий и электролит, и электрический источник, соединенный с электролизером и выполненный с возможностью подачи вспомогательного тока на желоб для создания вспомогательного электромагнитного поля по меньшей мере вблизи участка-наконечника желоба, обеспечивающего по меньшей мере частичное увеличение потока расплавленного алюминия в желоб при поступлении вспомогательного тока на желоб, находящийся в жидкостном сообщении с расплавом в электролизере.
Изобретение относится к композиции для материала смачиваемого покрытия катода алюминиевого электролизера для производства алюминия из криолит-глиноземных расплавов.
Изобретение относится к способу защиты смачиваемого покрытия на основе диборида титана катодных блоков алюминиевого электролизера от окисления при обжиге и пуске.

Изобретение относится к электролизеру в серии электролизеров для получения алюминия и составному токоотводящему катодному стержню электролизера. Электролизер содержит кожух и огнеупорную футеровку, образующие рабочую полость для размещения высокотемпературных расплавов криолита и алюминия, электропроводящий катод из множества катодных блоков, образующих основание рабочей полости, анод, подвешенный внутри электролизера и находящийся в контакте с высокотемпературными расплавами в рабочей полости, токоотводящий стержень, помещенный внутри пазов, выполненных в катодном блоке катода, непосредственно не контактирующий с расплавами в рабочей полости, и размещенную снаружи кожуха электрическую ошиновку.

Изобретение относится к способу создания смачиваемого покрытия углеродной подины алюминиевого электролизера. .

Изобретение относится к графитированному фасонному катодному устройству для получения алюминия. Катодное устройство содержит основной блок и графитированный катодный замедлительный блок. На продольных кромках основного блока симметрично выполнены две группы канавок. Сырьевой материал, из которого изготовляется упомянутый графитированный катодный замедлительный блок, включает в себя кальцинированный нефтяной кокс, электрокальцинированный антрацит, каменноугольный пек, легирующую добавку TiB2 и добавку SiC. Графитированный катодный замедлительный блок вставлен в канавку, образованную обеими упомянутыми канавками, с перекрыванием соединительного шва между двумя основными блоками. Обеспечивается достижение эффекта сбережения электроэнергии и снижения затрат, уменьшения эффективной толщины основного блока и влияния на его срок эксплуатации, и достижение частичного структурного усиления основного блока и продления срока эксплуатации электролизера. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к способу и устройству для рафинирования алюминия и его сплавов от электроположительных примесей. Устройство содержит контейнер с подиной, футерованной огнеупорными материалами, для размещения в нем расплавленного алюминиевого сплава с электроположительными примесями и расплавленного рафинированного алюминия, одну или несколько пористых мембран, пропитанных электролитом, непроницаемых для расплавленного алюминиевого сплава с электроположительными примесями и проницаемых для электролита и катионов алюминия, для разделения расплавленного алюминиевого сплава с электроположительными примесями, используемого в качестве анода с токоподводом, и расплавленного рафинированного алюминия в качестве катода с токоподводом и по крайней мере один МГД перемешиватель анодного расплава, установленный на границе раздела пористая мембрана - анодный расплав. Раскрыт также способ рафинирования алюминия и его сплавов от электроположительных примесей. Технический результат - обеспечение повышенной степени очистки. 2 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита. Способ включает отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, при этом концентрации вышеперечисленных фаз электролита определяют по формуле: C j = ( I j a / K j a ) / ( ∑ l M I l a / K j a ) , а криолитовое отношение определяют по формуле: K O = 2 × ∑ j α j C j ∑ j β j C j где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М- количество фторидных фаз, Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе. Обеспечивается упрощение и повышение его точности определения состава электролита. 2 ил., 4 табл.

Изобретение относится к электролизерам для производства жидких металлов, в частности алюминия, электролизом расплавленных солей. Электролизер содержит корпус, подину, крышку, установленные вертикально или наклонно малорасходуемые полые перфорированные и/или открыто пористые электроды, подсоединенные к источнику постоянного тока, при этом в электродах выполнены внутренние каналы для транспортировки по ним продуктов электролиза. Электроды выполнены в поперечном сечении в виде прямоугольника, закреплены в крышке электролизера и/или в углублениях корпуса и подины, причем в подине катодной частью, и соединены от 1 до 100 параллельных рядов с последовательно соединенными биполярными электродами в ряду от 2 до 100, при расстоянии между электродами от 0,5 до 5 см, а от боковой поверхности электрода до боковой стенки электролизера от 0,01 до 1 см, при этом каждый ряд эквипотенциальных электродов соединен с накопителем металла, расположенным в нижней части электролизера. Обеспечивается увеличение удельной производительности, снижение удельного расхода электроэнергии и массы токоподводящей ошиновки. 2 з.п. ф-лы, 13 ил., 1 табл.

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. В способе регулируют токовую нагрузку при определении перегрева поверхности подины путем непрерывного измерения температуры и токовой нагрузки по анодам и ниппелями, отключают анододержатели с максимально допустимой по технологии токовой нагрузкой или с неравномерным распределением тока по ниппелям анода, расположенного в районе «борт катодного кожуха - ближайший ниппель анода» и/или рядом стоящего анода, последовательно определив перегрев поверхности подины между соседними рядами анодов, отключают анододержатели с максимально допустимой токовой нагрузкой или с неравномерным распределением тока по ниппелям анода и/или близлежащих анодов в следующей последовательности: рядом стоящий анод - напротив стоящий анод - анод по диагонали, при этом покрывают подину слоем электропроводного материала под анодами, расположенными по периферии подины с площадью контакта покрытия от 50% до 90%, под рядом расположенными анодами площадь контакта составляет от 30% до 70%, под всеми оставшимися анодами - от 10% до 50%, и подключают электролизер на обжиг после достижения температуры поверхности его подины заданного по технологии значения. Обеспечивается снижение объема используемого электропроводного материала и равномерный нагрев подины до 900°С за 48 часов. 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способу получения алюминиево-кремниевых сплавов в электролизере для производства алюминия с использованием аморфного кремнийсодержащего оксидного сырья. Способ включает периодическую загрузку в расплав электролита фтористых солей, глинозема, аморфного кремнийсодержащего оксидного сырья и последующее восстановление оксидов алюминия и кремния, при этом в качестве аморфного кремнийсодержащего оксидного сырья используют микрокремнезем, получаемый в процессе очистки технологических газов при производстве кремния и кремнийсодержащих сплавов, который загружают в расплав электролита с использованием установок автоматического питания электролизера. В электролизере поддерживают увеличенное на 5÷30 вес.% количество расплава электролита, в расплав электролита вместе с микрокремнеземом вводят измельченный кварцит в количестве до 40% от веса микрокремнезема. Дополнительно микрокремнезем предварительно смешивают с глиноземом или фтористыми солями и загружают в расплав электролита, причем смешивание микрокремнезема с глиноземом осуществляют путем их совместной подачи в сухую адсорбционную газоочистку корпуса электролиза алюминия, затем полученную смесь загружают в расплав электролита в виде фторированного глинозема и фторированного микрокремнезема. Обеспечивается увеличение производительности электролизера по алюминиево-кремниевому сплаву, повышение выхода по току, улучшение качества алюминиево-кремниевого сплава. 4 з.п. ф-лы, 4 табл.

Изобретение относится к способу запуска электролизера для производства алюминия, имеющего катодный блок с верхней поверхностью. Способ включает размещение материала контактного сопротивления на верхней поверхности катодного блока, опускание множества анодов до упора в материал контактного сопротивления, заполнение электролизера и покрывание анодов твердым электролитным материалом, содержащим дробленый материал электролитной ванны, криолит или их смеси, подачу электрического тока на аноды для по меньшей мере частичного расплавления твердого электролитного материала и подъем анодов при достижении заданной глубины расплавленного электролитного материала. Обеспечивается сокращение рабочей нагрузки на подъемный кран и возможность увеличения вдвое числа электролизеров, запускаемых в течение заданного периода времени. 14 з.п. ф-лы, 2 табл., 6 ил.

Изобретение относится к способу определения криолитового отношения (КО) мольного отношения (NaF+KF)/AlF3) с добавками фторидов кальция магния и калия. Способ включает построение градуировочных характеристик по Na, F, Са, Mg с использованием отраслевых стандартных образцов (ОСО) состава электролита электролизеров производства алюминия, прошедших метрологическую аттестацию, а по K - с использованием синтетических образцов электролита, с установленной по процедуре приготовления погрешностью значения содержания калия в виде регрессионных зависимостей, при этом градуировочные характеристики для фтора, натрия, кальция, и магния строят в виде регрессионной зависимости: , j≠k≠I , где i - определяемый элемент, j - элемент, участвующий в поглощении (наложении) определяемого элемента, k – элемент, участвующий в возбуждении определяемого элемента, bi, ci - коэффициенты уравнения регрессии для i-го элемента, определяемые методом наименьших квадратов, с/имп., мас. % соответственно, Ii - измеренная интенсивность флуоресцентного излучения i-го элемента, имп./с, Ci - концентрация i-го калия, мас. %, Cj - концентрация j-го элемента матрицы, мас. %, pj - коэффициент коррекции перекрывания интенсивности, pj=0÷1; (1+M)i - коэффициент влияния матрицы, величину которого определяют по формуле: , где i - определяемый элемент, αj - коэффициент поглощения, величина которого рассчитывается по методу наименьших квадратов, (% масс.)-1; βk - коэффициент возбуждения, величина которого рассчитывается по методу наименьших квадратов; Ck - концентрация k-го элемента матрицы, масс. %; N - количество элементов, а градуировочную характеристику для калия строят в виде регрессионной зависимости: С=aI2+bI+с, где: а, b, с - коэффициенты уравнения регрессии для калия, определяемые методом наименьших квадратов, (с/имп.)2, с/имп., масс. % соответственно; I - измеренная интенсивность флуоресцентного излучения аналитической линии калия, имп/с; С - концентрация калия, масс. %. Градуировочную характеристику для определения Na строят с применением α и β коррекции по Al, а градуировочную характеристику для определения F строят с учетом наложения Na и применением β коррекции по Al. Обеспечивается достижение точности определения КО в электролите с добавкой К. 1 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к способу пуска алюминиевого электролизера с самообжигающимся анодом после капитального ремонта. Способ включает обжиг подины, заливку расплавленного электролита, электрическое подключение электролизера, снижение напряжения на электролизере до рабочего в пусковой период, загрузку содержащего соду сырья, фтористых солей и заливку жидкого алюминия. Снижение напряжения на электролизере до рабочего осуществляют одновременно при снижении уровня электролита и повышении уровня алюминия в электролизере, при этом общий уровень алюминия и электролита в электролизере поддерживают от 91 до 99% глубины шахты. Обеспечивается сокращение длительности и расхода электроэнергии пускового периода электролизера. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения сплава алюминий-скандий в условиях промышленного производства. Способ получения сплава на основе алюминия, содержащего 1-3 мас.% скандия, включает приготовление и расплавление смеси, содержащей фториды натрия, калия и алюминия, непрерывную подачу в расплав при температуре 800 – 950 0С оксида скандия в количестве, обеспечивающем поддержание оксида скандия в расплаве на уровне 1-8%, одновременное алюмотермическое восстановление скандия из его оксида и электролитическое разложение образующегося оксида алюминия, периодическую выгрузку полученного сплава с заданным составом и заливку расплавленного алюминия после выгрузки сплава в количестве, равном по массе выгруженному сплаву. Устройство для получения сплава содержит стальной кожух, футерованный изнутри огнеупорным кирпичом, с подиной и крышкой, анод, катод, графитовый тигель, размещенный на подовом графитовом блоке, который с установленным в него блюмсом является токоподводом к катоду, причем между внутренней футеровкой кожуха и внешней стороной тигля размещены нагревательные элементы, а в крышке установлен дозатор для непрерывной подачи оксида скандия и выполнено отверстие для периодической загрузки алюминия и периодической выгрузки полученного сплава. Изобретение позволяет получать сплав алюминий-скандий с заданным составом, обеспечивает высокую чистоту конечного продукта и высокий уровень извлечения скандия. 2 н. и 4 з.п. ф-лы, 1 ил., 5 пр.
Наверх