Изобретение относится к области технологии машиностроения и может быть использовано для получения качественных многослойных покрытий большой толщины на поверхностях гидроцилиндров, штоков и т.п., а также при восстановлении изношенных участков деталей. Способ включает электролитическое осаждение и механическое воздействие, при этом механическое воздействие осуществляют вибронакатыванием, причем первое вибронакатывание проводят перед электролитическим осаждением покрытия и повторяют процесс циклами до получения требуемой толщины, после нанесения каждого последующего слоя проводят вибронакатывание через промежуток времени t=
/
, где
- общая толщина покрытия, мм,
- скорость осаждения, мм/мин. Способ осуществляют по следующему режиму: зазор между анодом и обрабатываемой поверхностью не более 1,5 мм, катодная плотность тока 6-9
104 А/м2, усилие вибронакатывания 250-300 Н, скорость вращения заготовки 10-30 м/мин, радиус индентора 1,5-2,0 мм, амплитуда колебаний индентора 1,0-1,5 мм, частота колебаний 1400-2800 мин-1, подача 0,05-0,15 мм/об. Технический результат - увеличение микротвердости, повышение сопротивления износу, снижение шероховатости покрытия. 1 з.п. ф-лы, 2 ил., 1 табл.
Изобретение относится к области технологии машиностроения, в частности к способам нанесения многослойных покрытий, и может быть использовано для получения качественных многослойных покрытий большой толщины на поверхностях гидроцилиндров, штоков и т.п., а также при восстановлении изношенных участков деталей.
Известен способ (журнал “Машиностроитель” 1997 г., №10, стр. 23-24. В.П. Смоленцев, Е.В. Смоленцев, С.Ю.Жачкин, статья Технология покрытия и восстановления деталей) гальваномеханического (гальванодеформирующего) нанесения покрытий, который заключается в периодическом многократном электролитическом осаждении малых (менее 1 мкм) слоев с последующим пластическим деформированием каждого слоя.
Однако в публикации не указан способ поверхностного пластического деформирования наносимых слоев покрытий и вид предварительной обработки поверхности перед нанесением покрытий, которая влияет на качество сцепления материала основы с покрытием.
В качестве прототипа принят способ электролитического хромирования (патент РФ №2175032, C 25 D 5/22 от 20.10.2001 г.), включающий предварительное осаждение хрома и окончательное хромирование с механическим воздействием на катодную пленку за счет контакта обрабатываемой поверхности с хонинговальными брусками, совершающими возвратно-поступательное перемещение при вращении обрабатываемого изделия с принудительной прокачкой электролита в межэлектродном зазоре, причем перед предварительным осаждением хонинговальные бруски устанавливают с гарантированным зазором, а в процессе хонингования делают паузу в подаче технологического тока с последующим повышением плотности тока до рабочей величины.
Основные параметры и режимы способа электролитического хромирования по прототипу: обрабатываемая деталь - валик из стали 9Х2МФ; предварительный гарантированный зазор между брусками и обрабатываемой поверхностью 0,3-0,5 мм (не более 1,5 мм); толщина предварительного слоя хрома - 55 мкм; скорость возвратно-поступательного движения абразивных брусков 0,1 м/с с усилием прижима - 2 МПа; время обработки - 16 мин; с паузой в подаче тока 11,7 мин; при окончательном повышении плотности тока до рабочей величины.
Режим электролитического хромирования по прототипу: катодная плотность тока изменяется от 0 А/м
2 до 5

10
4 А/м
2; температура электролита – 621

С; скорость протока электролита
э - 3,2 м/с; скорость электролитического осаждения покрытия
n – 3,2 мм/мин. Электролит стандартный с содержанием компонентов: хромовый ангидрид - 250 г/л, серная кислота - 2,5 г/л.
В результате сравнительных исследований покрытий установлено, что для электролитического хромирования характерны зерна крупного размера (

1,2 мкм) со сквозными микротрещинами большой протяженности, проходящими через все покрытие. Причем на границе раздела хрома с металлом основы образуются крупные и мелкие поры, снижающие сцепления покрытия с металлом основы.
Однако этот способ недостаточно повышает качество биметаллического слоя (сталь-хром), работающих в сложных условиях эксплуатации.
Это обусловлено следующими обстоятельствами: рассматриваемый совмещенный способ обработки не исключает появления остаточных напряжений растяжения, присущих хромированию, а хонингование, направленное на повышение шероховатости, выглаживая поверхность, частично снимает наносимое хромовое покрытие.
Задачей разработки предлагаемого способа нанесения многослойных покрытий является обеспечение высоких качественных характеристик покрытий.
Технический результат - увеличение микротвердости покрытия и материала основы, формирование в поверхностном слое остаточных напряжений сжатия, повышение сопротивления износу, снижение шероховатости поверхности.
Этот технический результат достигается тем, что в способе нанесения многослойных покрытий, включающем электролитическое осаждение и механическое воздействие, механическое воздействие осуществляют вибронакатыванием, причем первое вибронакатывание проводят перед электролитическим осаждением покрытия и повторяют процесс циклами до получения требуемой толщины, после нанесения каждого последующего слоя проводят вибронакатывание через промежуток времени

где

- общая толщина покрытия, мм,

- скорость хромирования, мм/мин. Причем способ осуществляют по следующему режиму: зазор между анодом и обрабатываемой поверхностью не более 1,5 мм, усилие вибронакатывания Р=250-300 Н, катодная плотность тока 6-9

10
4 А/м
2, скорость вращения заготовки
з 10-30 м/мин, радиус индентора (шарика) R
инд=1,5-2,0 мм, амплитуда колебаний индентора А=1,0-1,5 мм, частота колебаний n=1400-2800 мин
-1, подача S=0,05-0,15 мм/об.
В структуре поверхностного слоя, полученного по предлагаемому способу, формируются плотно прилегающие друг к другу колонки мелких зерен (

0,2 мкм) со сдвигом и ориентацией их в направлении усилия вибронакатывания. Причем для предлагаемого способа характерно отсутствие на границе раздела хрома с металлом основы пор и других дефектов, а также наличие хрома, которое объясняется явлением массопереноса, протекающего в процессе многослойного гальванодеформационного нанесения покрытия. При дальнейшем послойном гальванодеформирующем нанесении покрытия (до 1000 мкм) происходит дальнейшее измельчение и дробление зерен на фрагменты и блоки (до

0,01 мкм).
При предварительной обработке поверхности вибронакатыванием по сравнению с известными способами обработки, такими как резание, шлифование и т.п., характеризующимися хаотичным расположением неровностей, образуется регулярный микрорельеф, увеличивающий площадь сцепления материала основы и покрытия. Повышается качество покрытия. Наряду с этим комбинация гальванического осаждения (например, хромирования и т.п.), для которого характерно появление остаточных напряжений растяжения с поверхностным пластическим деформированием вибронакатыванием, позволяет формировать в поверхности остаточные напряжения сжатия.
На фиг.1, 2 показано устройство для реализации способа.
Устройство включает в себя ванну 1 для электролитического нанесения покрытий и приспособление 2 для вибронакатывания. Ванна 1 снабжена анодом 3, источником тока 4 и приспособлением 5 для перемещения и вращения заготовки 6, к которому подсоединен редуктор 7 с двигателем 8. Приспособление 2 для вибронакатывания снабжено деформирующим элементом - индентором 9.
Способ осуществляют следующим образом. Заготовку 6, подлежащую обработке, тщательно промывают и устанавливают в приспособлении 5. В работу включается деформирующий элемент - индентор 9 и происходит процесс поверхностного пластического деформирования вибронакатыванием. Далее заготовку в приспособлении 5 устанавливают так, чтобы зазор между анодом 3 и обрабатываемой поверхностью заготовки 6 был небольшим - не более 1,5 мм. Затем одновременно включается система циркуляции электролита (наполнения ванны 1) и рабочее движение (вращение) заготовки 6, включается постоянный ток и начинается процесс электроосаждения. Плотность тока при этом значительно (в несколько раз) должна превышать величину, которая применяется при обычном электроосаждении. При гальваническом осаждении слоя покрытия толщиной (0,1-0,2)

(где

- общая толщина покрытия) в работу включается деформирующий инструмент и происходит процесс поверхностного пластического деформирования. Затем циклы непрерывно повторяются до получения требуемой толщины покрытия.
В результате происходит формирование многослойного покрытия большой толщины (до 1000 мкм).
Пример осуществления способа.
Сравнительные исследования проведены на полых цилиндрических образцах с внутренним диаметром D
вн=27-46,5 мм, наружным диаметром D
н=30-50 мм, длиной L=50 мм из стали 9Х2МФ.
Предварительные операции: обезжиривание, промывка в горячей и холодной воде, установка в приспособление.
Стандартный режим электролитического хромирования: температура электролита - 621

С; скорость протока электролита
э - 3-3,2 м/с; скорость электролитического осаждения покрытия
n мм/мин. Электролит стандартный с содержанием компонентов: хромовый ангидрид - 250 г/л, серная кислота - 2,5 г/л.
Основные параметры и режимы предлагаемого способа гальванодеформирующего нанесения многослойных покрытий: зазор между анодом и обрабатываемой поверхностью заготовки 1,5 мм; катодная плотность тока 6-9

10
4 А/м
2; усилие вибронакатывания Р=250-300 Н, скорость вращения заготовки
з=10-30 м/мин, радиус индентора (шарика) R
инд=1,5-2,0 мм, амплитуда колебаний индентора А=1,0-1,5 мм, частота колебаний n=1400-2800 мин
-1, подача S=0,05-0,15 мм/об, промежуток времени, через который проводят вибронакатывание t=3,5-4,0 мин. Толщина получаемого покрытия 80 мкм.
Уменьшение и увеличение зазора между анодом и обрабатываемой поверхностью заготовки менее 1,5 мм понижает производительность гальванического осаждения.
Уменьшение катодной плотности тока менее 6

10
4 А/м
2 не обеспечивает получение высокой прочности сцепления между слоями покрытия.
Увеличение катодной плотности тока более 9

10
4 А/м
2 не обеспечивает вынос продуктов промежуточного восстановления из зоны межэлектродного зазора.
При уменьшении усилия вибронакатывания Р менее 250 Н параметры: шероховатости R
a, остаточные напряжения
ост, микротвердость Н

- неоптимальны.
При увеличении усилия вибронакатывания Р более 300 Н возможны микротрещины в хромовом покрытии.
При уменьшении скорости вращения заготовки
з менее 10 м/мин снижается производительность обработки, образуются места (“островки”) недонаклепа или совсем не подверженные вибронакатыванию.
При увеличении скорости вращения заготовки
з более 30 м/мин возможно прохождение индентора по одному и тому же месту, что вызывает перенаклеп (микротрещины, шелушение).
При уменьшении радиуса индентора R
инд менее 1,5 мм увеличивается контактное давление, что вызывает перенаклеп (микротрещины, шелушение).
При увеличении радиуса индентора R
инд более 2,0 мм уменьшается контактное давление, что отрицательно влияет на формирование остаточных напряжений сжатия, уменьшает их.
Уменьшение менее 1,0 мм и увеличение более 1,5 мм амплитуды колебаний А, уменьшение менее 1400 мин
-1 и увеличение более 2800 мин
-1 частоты колебаний n, уменьшение менее 0,05 мм/об и увеличение более 0,15 мм/об подачи параметры: шероховатости
a, остаточные напряжения
ост, микротвердость H

- неоптимальны.
Уменьшение и увеличение промежутка времени t, через который проводят вибронакатывание, не обеспечивает требуемую величину и качество покрытия.
В таблице представлены результаты сравнительных исследований поверхностного слоя, полученные после обработки по технологии прототипа и предлагаемым способом.

Результаты сравнительных исследований, представленные в таблице, показали, что предложенный способ гальванодеформирующего нанесения многослойных покрытий обеспечивает увеличение микротвердости покрытия и материала основы в среднем на 10-20%, формирование в поверхностном слое по сравнению с прототипом (от минус 18 МПа до плюс 21 МПа) остаточных напряжений сжатия в пределах от минус 400 МПа до минус 800 МПа, повышение сопротивления износу на 200-400% по сравнению с прототипом 26%, снижение шероховатости поверхности с R
a=1,25 мкм до R
a=0,32-0,16 мкм.
Формула изобретения
1. Способ нанесения многослойных покрытий, включающий электролитическое осаждение и механическое воздействие, отличающийся тем, что механическое воздействие осуществляют вибронакатыванием, причем первое вибронакатывание проводят перед электролитическим осаждением покрытия и повторяют процесс циклами до получения требуемой толщины, после нанесения каждого последующего слоя проводят вибронакатывание через промежуток времени

где

- общая толщина покрытия, мм;

- скорость электролитического осаждения покрытия в мм/мин.
2. Способ по п.1, отличающийся тем, что его осуществляют по следующему режиму: зазор между анодом и обрабатываемой поверхностью не более 1,5 мм, катодная плотность тока 6-9

10
4 А/м
2, усилие вибронакатывания Р=250-300 Н, скорость вращения заготовки
з=10-30 м/мин, радиус индентора (шарика) R
инд= 1,5-2,0 мм, амплитуда колебаний индентора А=1,0-1,5 мм, частота колебаний n=1400-2800 мин
-1, подача S=0,05-0,15 мм/об.
РИСУНКИ
Рисунок 1,
Рисунок 2