Движительный комплекс для подводного аппарата
Изобретение относится к судостроению, а именно к судовым движителям для скоростных, тихоходных и позиционирующих подводных аппаратов. Комплекс содержит гребной винт, насадку в виде кольцевого крыла, обращенного выпуклой стороной внутрь, и устройство для ее крепления на корпусе подводного аппарата или его мотогондолы с сужающейся конической кормовой оконечностью. Проточный кольцевой канал движителя образован с внутренней стороны сужающейся частью корпуса, а с наружной стороны выпуклой частью профиля насадки. Угол конусности наружной поверхности крыла меньше угла конусности корпуса на 5-10o. Гребной винт расположен в выходной части насадки или за ее пределами. Устройство для крепления насадки к корпусу выполнено в виде решетки радиально расположенных закручивающих перед гребным винтом поток лопаток, образующих с осевым направлением угол 10-30o. Изобретение позволяет улучшить пропульсивные качества гребного винта и обеспечить компенсацию кренящего момента от его работы. 2 ил.
Изобретение относится к области судовых движителей, а более конкретно к области движителей для подводных аппаратов, и может быть использовано на скоростных, тихоходных и позиционирующих подводных объектах для улучшения их пропульсивных качеств и компенсации кренящего момента, вызванного работой двигательно-движительного комплекса.
Известны судовые движительные комплексы аналогичного назначения. Например, водометный движитель по а. с. 989224/27-11 от 29.11.67 содержит водопроточный канал с осевым насосом, контрпропеллером и обтекателем, у которого водопроточный канал образован с внутренней стороны ступицами осевого насоса и контрпропеллера, а с наружной стороны цилиндрической либо конической поверхностью кольцевого крыла, обращенного выпуклой стороной наружу. При этом водопроточный канал выполняется сужающимся и превышающим осевую протяженность лопастей насоса и контрпропеллера в 1...1,2 раза, а хорда кольцевого крыла устанавливается под углом от 0o до 17o к осевому направлению. Однако, как известно из теории крыла (см., например, Основы теории корабля, А.В. Герасимов, А. И. Пастухов, В.И. Соловьев, М.: Военное издательство МО СССР, 1958 г., 57, стр. 265), на кольцевом крыле возникает подъемная сила, направленная в сторону выпуклой поверхности крыла и перпендикулярная к направлению скорости потока перед крылом. За счет сужения потока в кормовой части подводного аппарата проекция этой силы на ось движителя направлена в сторону, противоположную движению аппарата, и, суммируясь с силой гидродинамического сопротивления кольцевого крыла, дает значительную величину, существенно снижающую пропульсивные качества комплекса. Более близким к предлагаемому изобретению аналогом является движительный комплекс типа "гребной винт в направляющей насадке", описанный в ряде учебников и монографий (см. , например, Судовые движители, Л.С. Артюшков, А.Ш. Ачкинадзе, А. А. Русецкий, Л. : Судостроение, 1988 г., 59, стр. 245). У движительных комплексов этого типа, принятых в качестве прототипа, насадка представляет собой кольцевое крыло, обращенное выпуклой стороной внутрь проточного канала, образованного ступицей гребного винта и насадкой. При этом отношение длины насадки к диаметру винта составляет 0,6...0,8, а относительное расстояние от входа в насадку до условного диска винта составляет 0,35...0,375 от длины насадки. Преимуществом движительного комплекса, выбранного в качестве прототипа, по сравнению с рассмотренным ранее аналогом является наличие дополнительной силы тяги на направляющей насадке, которая возникает при коэффициенте нагрузки движителя, равном 2,0, и растет с увеличением этого коэффициента. Однако движители этого типа не содержат конструктивных элементов для компенсации кренящего момента, возникающего на корпусе судна или подводного аппарата при работе движительно-двигательной установки, что недопустимо для плавающих объектов с малым коэффициентом остойчивости, каким являются необитаемые и, особенно, скоростные подводные аппараты. Кроме того, движители скоростных подводных аппаратов, как правило, имеют коэффициент нагрузки меньше 1,0, вследствие чего использование на них движителя-прототипа не дало бы положительного эффекта в пропульсивных качествах, а увеличение скоростей в зоне гребного винта, вызванное наличием насадки, привело бы к ухудшению его кавитационных характеристик. Задачей предлагаемого устройства является повышение пропульсивных качеств одиночного гребного винта при сохранении его кавитационных характеристик и обеспечении компенсации кренящего момента от работы гребного винта. Для выполнения поставленной задачи проточная часть движителя, состоящего из гребного винта, кольцевой насадки с профилем, обращенным выпуклой стороной внутрь кольца, и устройства для крепления насадки к корпусу, имеющему осесимметричную сужающуюся часть, выполняется в виде кольцевого канала, образованного с внутренней стороны сужающейся частью корпуса аппарата, а с наружной стороны выпуклой частью профиля насадки, причем угол наклона наружной поверхности насадки выбирается на 5o...10o меньше, чем угол наклона образующей корпуса. Гребной винт располагается в выходной части проточного тракта или за его пределами, а устройство для крепления насадки к корпусу выполняется в виде решетки радиально расположенных профилей или пластин, образующих с направлением потока угол 10o...30o, отсчитываемый от направления движения в сторону вращения гребного винта. Сущность изобретения пояснена на чертежах, где на фиг.1 показан движительный комплекс для подводного аппарата, а на фиг.2 изображены диаграммы скоростей и сил, возникающих при работе комплекса. Движительный комплекс содержит гребной винт 1, расположенный за конической кормовой оконечностью корпуса 2 или на ее продолжении, направляющую насадку 3 в виде кольцевого крыла, обращенного выпуклой стороной внутрь насадки, и поддерживающих ее профилированных лопаток 4. Кольцевое крыло располагается над конической оконечностью корпуса, при этом угол конусности наружной поверхности крыла















а проекция на боковое направление - касательную силу dQзл, создающую момент

направленный в сторону, противоположную моменту, приложенному со стороны жидкости к гребному винту. Расчеты показывают, что момент на лопастях закручивающего аппарата, равный моменту на гребном винте на установившемся режиме работы, достигается при угле установки лопаток в пределах 10o...30o в зависимости от числа и ширины лопаток и параметров винта. При этом сопротивление закручивающих лопаток может составлять до 10... 15% от упора гребного винта. Из теории гидродинамических решеток известно (см., например, Судовые движители, М.М. Жученко, В.М. Иванов, Л.: Судпромгиз, 1956, 5.7, стр. 100), что касательная скорость (скорость закрутки потока) за решеткой принимает значение 2Vtзл. На лопастях вращающегося гребного винта, наряду с осевой, вызванной скоростью, также возникает касательная составляющая Vt1, принимающая за винтом значение Vt2= 2Vt1. Условием оптимальности комплекса "закручивающий аппарат плюс гребной винт" является отсутствие закрутки потока за комплексом. Поэтому для выполнения этого условия скорость Vtзл в закручивающей решетке должна быть равна по величине и противоположна по направлению скорости Vt1 в диске гребного винта. Это может быть достигнуто расчетным путем при проектировании комплекса. Влияние предварительной закрутки потока с помощью закручивающей решетки профилей на работу гребного винта видно из диаграммы скоростей на лопастях гребного винта, показанной на фиг.2. На элемент лопасти в обращенном движении натекает поток со скоростью W, являющейся геометрической суммой трех составляющих:
- скорости, обусловленной вращением винта


- поступательной скорости потока относительно винта Vp,
- скорости закрутки потока закручивающей решеткой профилей 2Vtзл. Наличие собственных вызванных скоростей гребного винта Va1 и Vt1 приводит к изменению направления относительной скорости, и ее угол с плоскостью вращения становится равным



Коэффициент полезного действия элемента лопасти на радиусе г равен

Пунктиром на фиг.2 показана диаграмма скоростей на элементе лопасти без предварительной закрутки потока. В этом случае угол


- расположение насадки в зоне сужающегося потока кормовой оконечности корпуса или мотогондолы и выбор оптимального угла ее конусности обеспечивают возникновение на ней полезной силы тяги даже при малых значениях нагрузки гребного винта;
- использование элементов конструкции крепления насадки на корпусе в качестве закручивающего аппарата обеспечивает возникновение момента, компенсирующего момент крена от работы гребного винта, а также приводит к увеличению КПД последнего, которое полностью или частично компенсирует сопротивление закручивающих лопаток;
- суммарное увеличение КПД предлагаемого движительного комплекса по сравнению с одиночным гребным винтом при одинаковых условиях работы может составлять 15%;
- расположение гребного винта в выходном сечении насадки или за ее пределами не вызывает ускорения потока на элементах винта и, следовательно, не ухудшает его кавитационных характеристик. Работоспособность предлагаемого устройства и расчетные оценки его эффективности подтверждены лабораторными испытаниями на макетном образце. В настоящее время разработана методика проектировочного и поверочного расчета движительного комплекса предлагаемого типа, спроектирован и изготовлен опытный образец для скоростного подводного аппарата по одной из тем, разрабатываемых в ЦНИИ "Гидроприбор".
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2