Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем
Изобретение относится к электроизмерительной технике, а именно к измерению активной и реактивной составляющих комплексного сопротивления двухполюсной электрической цепи и напряжения на ней без подключения средства измерения к одному из ее выводов, в частности, параметров изоляции высоковольтного электрического оборудования непосредственно в процессе его эксплуатации. Технический результат заключается в обеспечении возможности измерения абсолютных значений составляющих комплексного сопротивления без использования мостовой измерительной цепи, измерения параметров единичного двухполюсника без использования других двухполюсников и в возможности определения напряжения на измеряемом двухполюснике. Способ заключается в том, что включают последовательно с измеряемым двухполюсником резистор с регулируемым сопротивлением, измеряют напряжения на этом резисторе при трех значениях сопротивления и вычисляют значения измеряемых величин по определенным формулам на основе результатов измерения. 2 ил.
Изобретение относится к электроизмерительной технике, в частности к измерению активной и реактивной составляющих комплексного электрического сопротивления двухполюсных электрических цепей, и позволяет также измерять напряжение на двухполюснике без подключения средства измерения к одному из его выводов. Преимущественными областями применения изобретения являются измерение составляющих комплексного сопротивления высоковольтных пассивных электронных компонентов в процессе их производства и электрической изоляции высоковольтного электрического оборудования, особенно непосредственно в процессе его эксплуатации.
Известен способ измерения составляющих комплексного сопротивления двухполюсника на основе мостовой измерительной цепи (Сви П.М. Методы и средства диагностики оборудования высокого напряжения. - М.: Энергоатомиздат, 1992, с.36-37). Указанный способ измерения состоит в следующем. На мостовую измерительную цепь, в которую включен измеряемый двухполюсник, подают синусоидальное переменное напряжение. Постоянно измеряя напряжение в диагонали измерительной цепи, регулируют сопротивления опорных двухполюсников до достижения напряжением нулевого значения. Результаты измерения определяют по значениям регулируемых параметров измерительной цепи в этот момент при известных значениях постоянных параметров. При реализации данного способа моменту равенства напряжения нулю соответствует равенство Z1






где





где







где X - активная составляющая комплексного сопротивления двухполюсника; Y - реактивная составляющая комплексного сопротивления двухполюсника;
a1=-A1-1; (13)
а2=А2-1; (14)
b1=A1

b2=A2

с1=R2-A1

c2=R3 2-A2



где R1 - первое значение сопротивления резистора, R2 - второе значение сопротивления резистора, R3 - третье значение сопротивления резистора, UZ1 - напряжение на измеряемом двухполюснике при первом значении сопротивления резистора, U1 - напряжение на резисторе при первом значении сопротивления, UZ2 - напряжение на измеряемом двухполюснике при втором значении сопротивления резистора, U2 - напряжение на резисторе при втором значении сопротивления, UZ3 - напряжение на измеряемом двухполюснике при третьем значении сопротивления резистора, U3 - напряжение на резисторе при третьем значении сопротивления. На фиг.1 представлена функциональная схема устройства для измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем, реализующего предлагаемый способ измерения. На фиг.2 представлен вариант реализации резистора с регулируемым сопротивлением. Устройство для измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем (фиг.1) содержит генератор переменного напряжения 1, двухполюсник 2, резистор с регулируемым сопротивлением 3, аналого-цифровой преобразователь напряжения 4, блок управления и вычислений 5. Резистор с регулируемым сопротивлением 3 в предпочтительном варианте реализации (фиг.2) содержит первый 6, второй 7 и третий 8 постоянные резисторы, первый 9 и второй 10 аналоговые ключи, которые управляются сигналами 11 и 12 с блока управления и вычисления 5. Предлагаемый способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем реализуется следующим образом. Образуют измерительную цепь последовательным соединением двухполюсника и резистора с регулируемым сопротивлением. На измерительную цепь подают синусоидальное переменное напряжение. Последовательно во времени устанавливают три различных известных значения сопротивления резистора с регулируемым сопротивлением. Напряжения, формируемые на резисторе с регулируемым сопротивлением при этих трех значениях его сопротивления, определяются соответственно как



После установления каждого значения сопротивления измеряют соответствующее напряжение на резисторе с регулируемым сопротивлением. Результаты измерения фиксируют и запоминают. Значения составляющих комплексного сопротивления двухполюсника определяют путем решения системы двух уравнений относительно этих неизвестных:

Уравнения системы (24) получены путем деления на уравнение (23) уравнений (21) и (22) соответственно. Значения активной и реактивной составляющих комплексного сопротивления двухполюсника определяются как решения (8) и (9) данной системы уравнений. Значение напряжения UZ1, приложенного к двухполюснику при первом значения R1 сопротивления резистора с регулируемым сопротивлением, определяют из уравнения
UZ1=U-U1. (25)
Из уравнения (21) имеем

Подставляя в уравнение (25) выражение для U из уравнения (26), получаем уравнение (10). Аналогично получены уравнения (11) и (12), позволяющие определить значения UZ2 и UZ3 напряжения, приложенного к измеряемому двухполюснику, при значениях сопротивления резистора с регулируемым сопротивлением R2 и R3 соответственно. Устройство, которым может быть реализован предложенный способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем, с предпочтительным вариантом реализации резистора с регулируемым сопротивлением функционирует следующим образом. В момент начала измерения по сигналам 11 и 12 с блока управления и вычисления 5 аналоговые ключи 9 и 10 резистора с регулируемым сопротивлением 3 разомкнуты. В средней точке делителя напряжения, образованного двухполюсником 2 и первым постоянным резистором 6, формируется напряжение U1 в соответствии с уравнением (21). Напряжение U1 подается на вход аналого-цифрового преобразователя напряжения 4 и подвергается аналого-цифровому преобразованию. Код результата аналого-цифрового преобразования поступает в блок управления и вычислений 5 и запоминается. После этого блок управления и вычислений 5 формирует сигнал 11 на замыкание аналогового ключа 9. При этом второй постоянный резистор 7 подключается параллельно первому постоянному резистору 6, образуя резистор с общим сопротивлением R2. В средней точке делителя напряжения формируется напряжение 2 в соответствии с (22). Напряжение U2 также подвергается аналого-цифровому преобразованию, и код результата запоминается в блоке управления и вычислений 5. После этого по сигналу 12 с блока управления и вычислений 5 замыкается аналоговый ключ 10. При этом третий постоянный резистор 8 подключается параллельно первому 6 и второму 7 постоянным резисторам, образуя резистор с общим сопротивлением R3. В средней точке делителя напряжения при этом формируется напряжение U3 в соответствии с (23). Напряжение U3 также подвергается аналого-цифровому преобразованию, и код результата запоминается в блоке управления и вычислений 5. На основе результатов измерения напряжений U1, U2, U3 при известных значениях сопротивления резистора с регулируемым сопротивлением R1, R2, R3 блоком управления и вычислений 5 производится вычисление значений активной Х и реактивной Y составляющих комплексного сопротивления согласно (8) и (9) соответственно, а также значений напряжения на измеряемом двухполюснике UZ1, UZ2, UZ3 в соответствии с уравнениями (10), (11), (12). Значения параметров R1, R2, R3 заносятся в память блока измерений и вычислений 9 при изготовлении устройства и корректируются при его поверках. Параметры А1, А2, a1, а2, b1, b2, c1, c2 вычисляются в каждом цикле измерения по результатам измерения напряжений U1, U2, U3 с использованием констант R1, R2, R3. Блок управления и вычислений 9 может быть реализован на основе обычных средств вычислительной техники, например, персональной ЭВМ семейства IBM PC, соединенной с аналого-цифровым преобразователем и аналоговыми ключами стандартным интерфейсом. Рабочая программа блока управления и вычислений может быть написана на любом языке высокого уровня, например, Паскаль, с включением в нее подпрограмм на языке Ассемблер.
Формула изобретения





где Х - активная составляющая комплексного сопротивления двухполюсника;
Y - реактивная составляющая комплексного сопротивления двухполюсника;
а1=А1-1;
а2=А2-1;
b1=A1

b2=A2

c1=R2-A1

c2=R3 2-A2



R1 - первое значение сопротивления резистора;
R2 - второе значение сопротивления резистора;
R3 - третье значение сопротивления резистора.
РИСУНКИ
Рисунок 1, Рисунок 2