Система стабилизации и наведения
Изобретение относится к системам автоматического регулирования, а конкретно к системам стабилизации и наведения артиллерийского вооружения подвижных объектов, например блока оружия боевой машины пехоты (БМП). Технический результат: повышение точности работы. Сущность предлагаемого технического решения заключается в том, что в систему стабилизации и наведения, содержащую последовательно соединенные чувствительный элемент, сумматор, усилитель мощности и исполнительный привод, выход которого соединен со входом чувствительного элемента, а также источник управляющего воздействия, выход которого соединен со вторым входом сумматора, введены датчик тока, датчик напряжения и формирователь компенсирующего сигнала, выход которого соединен с третьим входом сумматора. Причем вход датчика тока соединен с первым выходом усилителя мощности, выход - с первым входом формирователя компенсирующего сигнала, вход датчика напряжения соединен со вторым выходом усилителя мощности, а выход - со вторым входом формирователя компенсирующего сигнала. 2 ил.
Изобретение относится к системам автоматического регулирования, а конкретно к системам стабилизации и наведения артиллерийского вооружения подвижных объектов, например, блока оружия боевой машины пехоты (БМП).
Известны системы управления инерционными объектами, например, антенными системами [1] , в которых возникают затруднения при формировании компенсационного сигнала, пропорционального первой производной от управляющего воздействия. Это приводит к усложнению схемных решений, например, к использованию буферных следящих систем. Известна также (принятая за прототип) система стабилизации и наведения танка Т-80 (стабилизатор 2Э 42) [2], имеющая в своей структуре компенсатор скоростной ошибки. Блочная схема данной системы представлена на фиг.1. Система содержит последовательно соединенные чувствительный элемент 1, сумматор 2, усилитель мощности 3 и исполнительный привод 4, выход которого соединен с входом чувствительного элемента 1. Кроме того, система содержит источник управляющего воздействия 5 (пульт управления), выход которого соединен со вторым входом сумматора 2, а также через формирователь первой производной от управляющего воздействия 6 с третьим входом сумматора 2. Система работает следующим образом. При работе системы в режиме наведения от источника управляющего воздействия 5 для снижения скоростной составляющей динамической ошибки используют сигнал первой производной от управляющего воздействия, который получают на выходе формирователя 6, вход которого соединен с выходом источника управляющего воздействия 5. Сигнал с выхода формирователя 6 подают на вход сумматора 2 с обратным знаком с сигналом скоростной ошибки, поступающим от чувствительного элемента 1. Подбором величины сигнала формирователя 6 добиваются минимума скоростной ошибки системы при наведении от источника управляющего воздействия 5. Недостатком описанной системы является пониженная точность при работе в режиме стабилизации из-за отсутствия возможности компенсации скоростной ошибки, вызванной возмущениями от разворотов носителя при его движении по пересеченной местности. В этом режиме отсутствует наведение, а значит, и не работает компенсатор по сигналу первой производной от управляющего воздействия. Предлагаемое техническое решение направлено на повышение точности работы путем снижения скоростной ошибки системы за счет обеспечения возможности компенсации скоростной ошибки, как в режиме наведения, так и в режиме стабилизации при разворотах носителя (корпуса БМП). Сущность предлагаемого технического решения заключается в том, что в систему стабилизации и наведения, содержащую последовательно соединенные чувствительный элемент, сумматор, усилитель мощности и исполнительный привод, выход которого соединен со входом чувствительного элемента, а также источник управляющего воздействия, выход которого соединен со вторым входом сумматора, введены датчик тока, датчик напряжения и формирователь компенсирующего сигнала, выход которого соединен с третьим входом сумматора, причем, вход датчика тока соединен с первым выходом усилителя мощности, выход - с первым входом формирователя компенсирующего сигнала, вход датчика напряжения соединен со вторым выходом усилителя мощности, а выход - со вторым входом формирователя компенсирующего сигнала. Материалы заявки поясняются чертежами, где: - на фиг.1 представлена блочная схема системы стабилизации и наведения (стабилизатор 2Э 42 ), принятой за прототип; - на фиг.2 представлена блочная схема предлагаемой системы стабилизации и наведения. Сведения, подтверждающие возможность осуществления предлагаемого технического решения с получением вышеуказанного технического результата, заключаются в следующем. Предлагаемая система стабилизации и наведения (фиг.2) состоит из последовательно соединенных чувствительного элемента 1, сумматора 2, усилителя мощности 3 и исполнительного привода 4, выход которого соединен со входом чувствительного элемента 1. В систему также входят: источник управляющего воздействия 5, выход которого соединен со вторым входом сумматора 2; датчик тока 6, вход которого соединен с первым выходом усилителя мощности 3, а выход - с первым входом формирователя компенсирующего сигнала 7; датчик напряжения 8, вход которого соединен со вторым выходом усилителя мощности 3, а выход - со вторым входом формирователя компенсирующего сигнала 7. Кроме того, выход формирователя компенсирующего сигнала 7 соединен с третьим входом сумматора 2. Предлагаемая система работает следующим образом. Для электродвигателя постоянного тока, используемого в исполнительном приводе 4, известно выражение: UДВ=Uум вых=IДВ




n - скорость вращения двигателя. Следовательно:
КДВ



Из формулы (3) видно, что для получения компенсационного сигнала, пропорционального скорости вращения электродвигателя, необходимо из напряжения на выходе усилителя мощности вычесть составляющую, пропорциональную току, протекающему через двигатель (IДВ

1. Основы проектирования следящих систем. Под ред. Н.А. Лакоты, М., "Машиностроение", 1978 г., стр. 15-21. 2. Стабилизатор 2Э 42. Техническое описание. Архив ГУЛ "ВНИИ "Сигнал", 1998 г.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2