Способ формирования нанорельефа на поверхности пленок
Использование: в технологии микроэлектроники. Сущность изобретения: способ формирования нанорельефа на поверхности пленок заключается в том, что наносят на пленку слой кремния толщиной от полутора до трех глубин формирования наноструктуры в слое кремния; распыляют поверхность кремния потоком ионов молекул азота в вакууме с выбором энергии ионов азота, угла потока ионов азота по отношению к поверхности кремния, глубины формирования наноструктуры и высоты наноструктуры на основании значения длины волны наноструктуры в диапазоне от 30 до 180 нм до формирования наноструктуры, отстоящей от пленки на расстояние в одну треть длины волны по впадинам волн наноструктуры и с ориентацией гребней волн перпендикулярно направлению проекции потока ионов на поверхность кремния; переносят рельеф наноструктуры на поверхность пленки, удаляя материалы наноструктуры и пленки ионно-лучевым или плазменным травлением. Техническим результатом изобретения является улучшение способа формирования нанорельефа на поверхности пленок. 8 з.п. ф-лы, 16 ил.
Изобретение относится к нелитографическим способам формирования волнообразного нанорельефа на поверхности пленок. Прозрачные для оптического излучения пленки с таким нанорельефом могут использоваться для ориентации жидких кристаллов в жидкокристаллических (ЖК) устройствах, в частности в ЖК индикаторах (ЖКИ) и ЖК экранах (ЖКЭ), для изготовления поляроидов и фазосдвигающих, просветляющих, антиотражающих, антибликовых и рассеивающих пленок в оптических устройствах. Пленки с нанорельефом и с дополнительным отражающим покрытием на их поверхности могут использоваться в качестве направленных диффузных отражателей, в частности в ЖКИ и ЖКЭ отражательного типа. Пленки кремния и аморфного алмаза с нанорельефом могут также использоваться в качестве эмиттеров электронов (холодных катодов с полевой эмиссией электронов) в устройствах вакуумной и твердотельной электроники, в частности в электролюминесцентных лампах, в том числе для ЖКЭ и плоских экранов.
Более конкретно, изобретение относится к нелитографическим способам формирования рельефа при использовании техники ионных пучков и сухих плазменных процессов, применяемых в технологии микроэлектроники, а именно к самоформированию волнообразного нанорельефа на поверхности нанесенного на пленку слоя аморфного кремния при облучении этого слоя потоком ионов азота и переносу нанорельефа в расположенные ниже слой или пленку при помощи ионно-лучевого или плазменного травления материалов аморфного кремния и пленки. При этом, в частности, может осуществляться модификация нанорельефа при помощи селективного и анизотропного плазменного процесса до формирования нанополос аморфного кремния на нижележащей пленке с последующим применением анизотропного плазменного процесса с использованием полос аморфного кремния в качестве маски до формирования нанорельефа в нижележащей пленке. В настоящее время ЖКИ и ЖКЭ широко применяются для отображения графической информации. Для работы различных типов ЖКИ и ЖКЭ требуется обеспечение определенной ориентации молекул жидкого кристалла (например, нематика) на поверхностях ориентирующих пленок, между которыми расположен ЖК слой. Известно, что в качестве ориентирующих пленок используют пленки полимеров, в частности полиимида, подвергнутые специальной механической обработке, сущность которой заключается в натирании поверхности пленки в одном направлении при помощи валика, покрытого тканью с ворсом из коротких полимерных волокон (например, вискозы, полиэфиров, нейлона и т.д.). Пример механического способа формирования ориентирующей полиимидной пленки раскрыт, в частности, в описании патента (US 6219123, 17.04.2001). Образование статических электрических зарядов, частиц пыли и невозможность строго выдерживать заданное направление волокон являются недостатками механического способа натирания ориентирующих пленок полимерными волокнами. Следует отметить, что данный способ формирования ориентирующей пленки не совместим с условиями чистоты технологических помещений, в которых проводятся другие процессы производства ЖКИ и ЖКЭ. Известны способы формирования ориентирующих, поляроидных и фазосдвигающих пленок, основанные на создании волнообразного микрорельефа на их поверхности. Многочисленные примеры формирования ориентирующих, поляроидных и фазосдвигающих пленок, основанных на микрорельефе, раскрыты в описании патента в применениях к ЖКИ и ЖКЭ устройствам (DE 4213802, 21.01.93). Указанные микрорельефы получают в результате применения следующих методов: голографического экспонирования фоточувствительного полиимидного слоя, известных в микротехнологии методов литографии, технологии микроштампов или нанесения микроштрихов на поверхность эпоксидных смол штрихмашиной с алмазной иглой. Недостатками этих всех методов являются их высокая стоимость, низкий выход годных изделий и малая производительность. Следует отметить, что стоимость методов литографии чрезвычайно возрастает при обеспечении ширины линии в 100 нм и менее и использование подобного оборудования едва ли будет оправдано для создания простого рисунка, состоящего из массива линий при условии, что имеются нелитографические способы формирования такого рисунка. Известны способы формирования ориентирующих пленок для жидких кристаллов, разработанные специалистами фирмы IBM, основанные на облучении поверхности пленки ионами аргона низкой энергии (от 20 до 700 эВ) (US 5770826, 23.06.2000; US 6020946, 1.02.2000; US 6061114, 9.05.2000; US 6061115, 9.05.2000; US 6124914, 26.09.2000; US 6331381, 18.12.2001). Однако ионное облучение в данных способах не приводит к формированию анизотропной топографии на поверхности пленок. Ориентация осуществляется за счет создания преимущественной ориентации химических связей на облученной ионами поверхности. Кроме того, важный параметр ориентации нематиков - начальный угол наклона молекул относительно плоскости ориентирующей поверхности - зависит от дозы ионного облучения, угла падения ионов и их энергии. Таким образом, необходима высокая степень контроля этих параметров и обеспечение их однородного распределения по поверхности пленки. Известно, что ориентация жидких кристаллов при помощи рельефной поверхности открывает возможности по созданию принципиально новых ЖКЭ с существенно сниженным энергопотреблением на основе явления бистабильной ориентации нематиков (патент: US 20010028426, 11.10.2001 и статья: G.P. Bryan-Brown Proceedings of the International Displays Research Conference, Palm Beach, Florida, USA (2000) pp.229-232). В данной статье также продемонстрирована возможность применения новых материалов для изготовления ЖКЭ, в частности, вместо стеклянных подложек использовались пленки из полиэфирсульфона (ПЭС) и полиэтилентерефталата (ПЭТ), а наряду с прозрачными электродами из смеси оксидов индия и олова (ITO) в структурах ПЭС/IТО использовались прозрачные электроды из пленок поли-3,4-этилендиокситиофена (ПЭДОТ) в структурах ПЭТ/ПЭДОТ. Применение полимерных пленок ПЭС, ПЭТ и ПЭДОТ в технологии позволяет изготавливать гибкие ЖКИ и ЖКЭ полностью из пластика, а использование пленки ПЭДОТ вместо ITO позволяет приготавливать ориентирующую поверхность непосредственно на поверхности пленки ПЭДОТ без дополнительной ориентирующей пленки. Микрорельефы в данной работе формировались на поверхности фоторезиста при помощи методов оптической литографии. Таким образом, важно иметь в распоряжении способ нелитографического формирования управляемой топографии на поверхностях как полимерных, так и неорганических материалов для применения их в оптике. Известен нелитографический способ формирования гофрированной поверхности полимерных тонких оптических пленок, основанный на разделении фаз ЖК полимера и ЖК мономера. При облучении жидкой пленки, состоящей из смеси этих веществ, утрафиолетовым излучением фаза ЖК полимера отделяется от фазы ЖК мономера и превращается в твердое вещество, в частности, в виде гофрированной полимерной пленки (Ibn-Elhaj M. & Schadt M., Nature 410 (2001) pp.796-799). Период и амплитуда анизотропных полимерных структур в этом методе зависит от толщины облучаемой утрафиолетовым излучением жидкой пленки, состава смеси и условий ультрафиолетового облучения. Следовательно, для обеспечения заданного периода структуры требуется обеспечение определенной толщины жидкой пленки, что в некоторых случаях может оказаться неприемлемым. Известны способы изготовления холодных катодов с полевой эмиссией электронов, основанные на формировании рельефа на поверхности алмазных или кремниевых пленок. В патенте (US 2001/0052469, 20.12.2001) раскрыт способ формирования эмиттера из пористого кремния. Известно, что поверхность пористого кремния имеет развитую топографию нанометрового масштаба и заостренные выступы такой поверхности, концентрируя электрическое поле, являются источниками полевой эмиссии электронов. Однако известно также, что пористый кремний химически нестабилен и со временем наступает деградация его свойств. В патенте (US 6204595, 20.03.2001) раскрыт способ формирования эмиттера на основе пленки аморфного алмаза, наносимой на кремниевую подложку. Однако в качестве топографии для концентрации электрического поля традиционно используется рельеф кремниевой подложки, формируемый при помощи методов литографии. Как упоминалось выше, при наличии нелитографических производительных методов создания простого рисунка, состоящего из массива линий шириной в 100 нм и менее, использование литографических методов для этой цели становится неоправданным. Таким образом, также важно иметь в распоряжении способ нелитографического формирования топографии на поверхностях пленок кремния и алмаза для применения их в вакуумной и твердотельной электронике в качестве холодных катодов с полевой эмиссией электронов. Известен нелитографический способ формирования волнообразной наноструктуры при помощи облучения поверхности кремния пучком ионов азота, раскрытый в описании патента (US 6274007, 14.08.2001). Известен способ плазменной модификации волнообразной наноструктуры, сформированной в слое аморфного кремния, осажденного на слой оксида кремния, раскрытый в описании заявки на изобретение (RU 2001127264/28(029205) "Способ изготовления полевого транзистора с периодически легированным каналом"). Эти оба способа положены в основу настоящего изобретения. Техническая задача настоящего изобретения - перенос рельефа наноструктуры, самосформированной на поверхности слоя кремния ионно-пучковым методом, в нижележащий слой или пленку при помощи ионно-лучевого или плазменного травления. Технический результат - улучшение способа формирования нанорельефа на поверхности пленок. Это достигается следующей совокупностью признаков. Наносят на пленку слой кремния толщиной от полутора до трех глубин формирования наноструктуры в слое кремния. Распыляют поверхность кремния потоком ионов молекул азота в вакууме с выбором энергии ионов азота, угла потока ионов азота по отношению к поверхности кремния, глубины формирования наноструктуры и высоты наноструктуры на основании значения длины волны наноструктуры в диапазоне от 30 до 180 нм до формирования наноструктуры, отстоящей от пленки на расстояние в одну треть длины волны по впадинам волн наноструктуры и с ориентацией гребней волн перпендикулярно направлению проекции потока ионов на поверхность кремния. Переносят рельеф наноструктуры на поверхность пленки, удаляя материалы наноструктуры и пленки. Предпочтительно осуществлять формирование потока ионов молекул азота при помощи ионного источника Кауфмана. Предпочтительно удалять материалы наноструктуры и пленки ионно-лучевым травлением. Предпочтительно удалять материалы наноструктуры и пленки плазменным травлением. Предпочтительно удалять кремний наноструктуры селективно по отношению к нитриду кремния наноструктуры и вертикально относительно поверхности пленки вплоть до поверхности пленки. Предпочтительно удалять материал пленки вертикально относительно поверхности пленки и селективно по отношению к материалам наноструктуры. Предпочтительно осуществлять удаление кремния наноструктуры при помощи реактивного ионного травления в плазме Cl2-Ar. Предпочтительно удалять кремний наноструктуры селективно по отношению к материалу пленки. Предпочтительно осуществлять удаление наноструктуры после удаления материала пленки. Сущность изобретения поясняется чертежами, где на фиг. 1 показано поперечное сечение слоистой структуры перед ионным облучением; фиг.2 показано поперечное сечение слоистой структуры в процессе формирования наноструктуры; фиг. 3 показано поперечное сечение волнообразной наноструктуры, сформированной в слое кремния; фиг. 4 показано поперечное сечение наноструктуры после анизотропного плазменного травления; фиг. 5 показано поперечное сечение нанорельефа, перенесенного в пленку изотропным плазменным травлением структуры, показанной на фиг.4; фиг. 6 показано поперечное сечение пленки с нанорельефом, перенесенным в пленку в результате ионно-лучевого или неселективного плазменного травления наноструктуры; фиг. 7 показано поперечное сечение наноструктуры после анизотропного плазменного травления, селективного по отношению к материалу пленки; фиг. 8 показано поперечное сечение нанорельефа, перенесенного в пленку анизотропным плазменным травлением структуры, показанной на фиг.7; фиг.9 показано поперечное сечение поляризатора, изготовленного на основе пленки с нанорельефом и ЖК полимера, имеющего в своем составе группы дихроичного красителя;фиг.10 показано поперечное сечение ячейки ЖК устройства;
фиг.11 показано схематическое изображение гребнеобразного ЖК полимера;
фиг.12 показано схематическое изображение линейного ЖК полимера;
фиг. 13 показана электролюминесцентная вакуумная лампа диодного типа с холодным катодом;
фиг. 14 показана твердотельная тонкопленочная электролюминесцентная лампа;
фиг.15 показана твердотельная тонкопленочная электролюминесцентная лампа с нанорельефом на поверхности металлического катода;
фиг.16 показана твердотельная тонкопленочная электролюминесцентная лампа с нанорельефом на поверхности кремниевого катода. Сущность изобретения поясняется следующим примером. Пример. На фиг.1 показана структура, состоящая из слоев стекла 1, прозрачного электрода 2, пленки 3 и кремния 4. В дальнейшем номером 3 обозначается любая пленка, на которую переносится рельеф наноструктуры. В данном частном случае пленка 3 - это полиимидная пленка. В качестве прозрачного электрода часто используется ITO. Конструкция из слоев 1, 2 и 3 (полиимид) применяется для изготовления ЖКИ и ЖКЭ. Слой кремния 4 может быть пленкой аморфного кремния (a-Si) или гидрогенизированного аморфного кремния (a-Si: H). Слой a-Si:H толщиной ~400 нм наносят, например, в низкочастотном разряде силана SiH4 в течение 20 минут известным способом (Budaguan В.G., Sherchenkov A. A., Struahilev D.A., Sazonov A.Y., Radosel'sky А.G., Chernomordic V. D. , Popov A.A. and Metselaar J.W. "Amorphous Hydrogenated Silicon Films for Solar Cell Application Obtained with 55 kHz Plasma Enhanced Chemical Vapor Deposition" - Journal of the Electrochemical Society, 1998, Vol.145, 7, pp. 2508-2512). Существуют по крайней мере еще два известных метода формирования слоев аморфного кремния при температуре подложки, близкой к комнатной. Один - нанесение кремния при испарении кремниевой мишени электронным лучом в высоком вакууме. Другой - метод магнетронного распыления кремниевой мишени. Волнообразная наноструктура формируется в слое a-Si, осажденном любым указанным выше способом. Толщина слоя аморфного кремния ~400 нм задается выбором длины волны наноструктуры




Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 20.08.2004
Извещение опубликовано: 20.12.2005 БИ: 35/2005