Устройство для измерения микрорасхода газа
Тепловой микрорасходомер содержит герметичный теплоизолированный металлический корпус с расположенными в нем теплообменником-нагревателем и газораспределительной камерой для подачи поступающего в нее потока в измерительный и термокомпенсационный каналы, выполненные идентичными. В каналах корпуса размещены теплочувствительные элементы (ТЧЭ) в виде полупроводниковых термисторов косвенного нагрева, а на внешней поверхности каналов установлены дополнительные нагреватели. ТЧЭ термокомпенсационного канала включен в электронную схему блока управления мощностью нагревателей. Изобретение обеспечивает повышение точности и чувствительности измерений в широком диапазоне температур поступающего газа и внешней среды, а также обладает повышенной надежностью. 1 ил.
Изобретение относится к измерительной технике, а именно к измерению массового расхода газа и к устройству тепловых расходомеров газа, предназначенных для использования в системах контроля и регулирования расхода газа в диапазоне 0-100 мг/с при широком варьировании входной температуры газа и температуры внешней среды.
Известны тепловые расходомеры, основанные на учете эффекта теплового воздействия на среду [1]. Такие расходомеры содержат корпус, трубопровод с расположенными (расположенным) на нем нагревателями (нагревателем) [2, 3]. Датчиками температуры на участках трубопровода, являющегося измерительным элементом (ИЭ), служат или сами нагреватели [2], или термодатчик, размещенный на выходном конце ИЭ [3]. Для исключения влияния температуры окружающей среды корпус расходомера [2] термостатируется с помощью отдельного нагревателя. Корпус расходомера [3] теплоизолируется, причем теплоизолирующий участок снабжен устройством регулировки его температуры. Для уменьшения влияния температуры входящего в ИЭ газа термостатируемый корпус расходомера [2] снабжен теплообменником, протекая по которому газ прогревается до некоторой неконтролируемой температуры, необязательно равной температуре корпуса. Влияние температуры газа, входящего в расходомер [4], частично компенсируется электронными устройствами, вырабатывающими компенсирующими сигнал как функцию температуры входящего газа. Известен тепловой расходомер, содержащий корпус, измерительный газопровод с расположенным в нем теплочувствительным элементом (ТЧЭ) с металлической проводимостью, средства автоматики для поддержания температуры ТЧЭ постоянной. Подаваемое на ТЧЭ напряжение характеризует расход газа [5]. Общим недостатком расходомеров [2]-[5] является недостаточная чувствительность систем термостабилизации корпуса газопровода или ТЧЭ, обусловленная использованием датчиков с металлической проводимостью, обладающих малыми значениями температурного коэффициента сопротивления (ТКС). Известны расходомеры, содержащие корпус-газопровод с измерительным и компенсационным каналом (каналами), в которых расположены ТЧЭ-термисторы [6], пироэлектрические термодатчики [7]. Оба расходомера обладают весьма сложными отслеживающими тепловой режим системы электронными устройствами, что снижает надежность их работы. По числу совпадающих отличительных признаков тепловой расходомер [6] принят за прототип. Задачей настоящего изобретения является предложение и реализация наиболее простого устройства для измерения расхода газа, обеспечивающего, в то же время, автономность расходомера (т.е. независимость его показаний от значений температур входящего газа Твх и окружающей среды Тср), повышение его точности, чувствительности и надежности при одновременном расширении диапазона измерений массового расхода, газа. Предлагаемое техническое решение изобретения состоит в том, что в известном способе измерения расхода газа, заключающемся в помещении нагретого ТЧЭ в охлаждающий его поток газа (см. [5], [6], [7]), для обеспечения автономности расходомера осуществляется термостабилизация газового потока на фиксированном температурном уровне Тп, независящем от Твх и Тср, с помощью нагревателей, мощность которых управляется другим ТЧЭ-термистором, идентичным измерительному ТЧЭ, и находящемся в компенсационном канале, идентичном рабочему каналу. Разделение газового потока на два одинаковых по расходу (G/2) и температуре (Тп) потока осуществляется с помощью газораспределительной камеры (ГРК). На чертеже изображен общий вид предложенного расходомера газа. Он содержит: теплоизолированный (внутри и снаружи в зависимости от условий эксплуатации) герметичный металлический корпус 1 с входным и выходным отверстиями под штуцеры; нагреватель - теплообменник (ТО) 2 с нихромовой спиралью 10 внутри него; газораспределительную камеру (ГРК) 3, герметично соединенную с ТО и с двумя идентичными каналами 4, 5; измерительный ТЧЭ 6 (полупроводниковый термистор) с косвенным подогревом током Iк.п., включенный в схему преобразователя 7 выходного сигнала в электрический; термокомпенсационный ТЧЭ 8 (термистор полупроводниковый), включенный в электронную схему блока 9 управления мощностью нагревателя ТО (БУМ), нагрузкой которого служат спираль 10 теплообменника и нагреватели 11 и 12 на внешних поверхностях каналов 4,5. Расходомер работает следующим образом. Через входной штуцер (не показан) газ температуры Твх поступает в теплообменник 2, в котором нагревается до температуры Тr и попадает в газораспределительную камеру (ГРК) 3, делящую газовый поток на два одинаковых по расходу (G/2) и температуре потока, поступающие затем в измерительный 4 и в термокомпенсационный 5 каналы соответственно. Расположенный в канале 5 теплочувствительный ТЧЭ 8 принимает температуру набегающего потока газа, и его омическое сопротивление становится равным R(Tr). Если Тr



Формула изобретения
Тепловой микрорасходомер, содержащий корпус с расположенными в нем газораспределительной камерой и каналами для размещения соответствующих теплочувствительных элементов - измерительного, выполненного в виде полупроводникового термистора с косвенным нагревом, и термокомпенсационного - в виде полупроводникового термистора, отличающийся тем, что в него введены нагреватель-теплообменник управляемой мощности, нагреватели, размещенные на стенках каналов корпуса, выполненных идентичными, и блок управления мощностью нагревателя-теплообменника и нагревателей каналов, в электронную схему которого включен термокомпенсационный теплочувствительный элемент.РИСУНКИ
Рисунок 1