Электретные изделия и фильтры, стойкие к масляному туману
Изобретение относится к электретным изделиям, используемым для удаления аэрозолей из газов, особенно из воздуха. Новые электретные изделия, содержащие полимер и добавку, повышающую эффективность, могут быть идентифицированы по их характеристикам проводимости при тепловом возбуждении или их фильтрационным свойствам. Такие электретные изделия, как нетканые фильтровальные полотна и респираторы, имеют превосходный показатель нагрузки масляным туманом, низкую проницаемость и маленький перепад давлений. Электретные изделия изготавливают предпочтительно дутьем из расплава смеси полимера и фторсодержащей добавки, выбранной из группы, состоящей из соединений формул (I), (II) и (III), которые приведены в формуле изобретения. 8 с. и 22 з.п. ф-лы, 17 ил., 16 табл.
Изобретение относится к электретным изделиям, электретным фильтрам и респираторам, в которых применяются электретные фильтры, и к использованию электретных фильтров для удаления частиц из газа, особенно для удаления аэрозолей из воздуха. Изобретение особенно относится к электретным фильтрам, обладающим улучшенными свойствами, например стабильностью электрета в присутствии масляных туманов (т.е. жидких аэрозолей).
Предпосылки к созданию изобретения Усилия многих ученых и инженеров долгое время были направлены на улучшение фильтрационных характеристик воздушных фильтров. В некоторых наиболее эффективных воздушных фильтрах используются электретные изделия. Электретные изделия характеризуются постоянным или квазипостоянным электрическим зарядом, см. Дж.М. Сесслер, Электреты, Спрингер Верлаг, Нью-Йорк, 1987. Исследователи приложили значительные усилия для улучшения свойств электретных изделий, применяемых в фильтрах. Несмотря на расширенные исследования, направленные на производство усовершенствованных электретных изделий, эффекты от изменения технологических параметров недостаточно хорошо изучены, и, вообще, эффекты от изменения технологических условий трудно, а иногда и невозможно прогнозировать. Электретные изделия имеют особые требования к свойствам, такие как стабильность заряда, характеристика загрузки, влагостойкость и маслостойкость и т. д. , подверженные существенному влиянию со стороны технологических операций, которые поэтому должны быть в целом безвредными или благоприятными для нетканых полотен или тканеподобных материалов. Таким образом, при отсутствии достаточно большого количества опытных данных зачастую очень трудно оценить воздействия, которые конкретная технологическая операция (например, резкое охлаждение) предположительно может оказать на электретные свойства конечного продукта. Один из способов, применяемых для улучшения фильтрационных свойств электрета, представляет собой подмешивание добавки, повышающей эффективность, в полимер, используемый для изготовления электретных волокон. Например, Джонс (Jones) и др. в патентах США 5411576 и 5472481 предложили электретные фильтры, изготовленные методом экструзии смеси полимера и обрабатываемого в расплавленном виде фторсоединения для получения микроволокнистого полотна, подвергаемого затем последовательным операциям отжига и обработки коронным разрядом. Лифшуц (Lifshutz) и др. в международной заявке WO 96/26783 (соответствующей патенту США 5645627) предложили электретные фильтры, изготовленные посредством экструзии смеси полимера и амида жирной кислоты или фторсодержащий оксазолидинон для получения микроволокнистого полотна, подвергаемого затем последовательным операциям отжига и обработки коронным разрядом. Известны также другие способы, улучшающие зарядные характеристики электретных изделий. Например, Клаас (Klaase) и др. в патенте США 4588537 предложили применять обработку коронным разрядом, чтобы инжектировать заряд в электретный фильтр. Ангадживанд (Angadjivand) и др. в патенте США 5496507 показали, что при соударении капель воды с нетканым микроволокнистым полотном в этом полотне наводится заряд, а Россе (Rousseau) и др. в международной заявке WO 97/07272 предложили электретные фильтры, изготовленные посредством экструзии смесей полимера и фторсоединения или соединения на базе органического триазина для получения микроволокнистого полотна, которое последовательно подвергают соударениям с каплями воды для наведения заряда, благодаря чему улучшаются фильтрационные свойства гидрозаряженного полотна. Мацуура (Matsuura) и др. в патенте США 5256176 предложили способ изготовления стабильных электретов путем воздействия на электрет чередующимися циклами наведения электрических зарядов и последующего нагрева изделия. Мацуура (Matsuura) и др. не раскрыли электреты, содержащие добавки, улучшающие показатель нагрузки масляным туманом. Краткое изложение сущности изобретения Настоящее изобретение обеспечивает электретное изделие, содержащее полимер и добавку, повышающую эффективность (как показано ниже, могут быть добавлены также и другие ингредиенты). Электретное изделие может быть изготовлено, например, в виде волокна, пленки или нетканого полотна, особенно если изделие применяется в качестве фильтра. Авторы изобретения установили, что составы с низкой степенью кристалличности, содержащие полимер и добавку, повышающую эффективность, обладают особой ценностью, поскольку их можно преобразовать в электретные фильтры, обладающие превосходными свойствами. Как показано ниже, составы с низкой кристалличностью можно получить, введя в технологический процесс операцию резкого охлаждения. Резкое охлаждение снижает упорядоченность материала (например, кристалличность) по сравнению с упорядоченностью материала, не подвергаемого резкому охлаждению. Операцию резкого охлаждения выполняют одновременно или спустя небольшое время после выполнения операции придания расплавленному материалу требуемой формы. Обычно материалу придают форму посредством экструзии через выходную часть оформляющего канала головки экструдера и затем быстро охлаждают материал (обычно подавая охлаждающую жидкость к экструдату) сразу после выхода материала из экструдера. Изобретение также обеспечивает уникальное электретное изделие, содержащее полимер и добавку, повышающую эффективность. Пик спектра разрядного тока теплового возбуждения имеет ширину менее приблизительно 30oС на половине высоты, что следует из результатов измерения в соответствии с методикой испытаний 3 для определения разрядного тока теплового возбуждения. Электретные фильтры, содержащие электретные изделия, проявляющие такие уникальные спектральные характеристики разрядного тока теплового возбуждения, могут демонстрировать превосходные фильтрационные свойства. Изобретение включает изделия, в состав которых входят электретные изделия, и включает также способы удаления частиц твердого или жидкого аэрозоля из газа при помощи электретных изделий по изобретению. Изобретение относится также к электретным фильтрам, обладающим превосходными характеристиками, которые не обеспечиваются в фильтрах аналогичной структуры, не содержащих описанных в изобретении электретных изделий. Такие электретные фильтры содержат волокна, изготовленные из смеси полимера и добавки, повышающей эффективность, и отличаются превосходным показателем нагрузки жидким аэрозолем с диоктилфталатом. Показать нагрузки жидким аэрозолем с диоктилфталатом определяется при выполнении отдельных тестов, описанных в разделе "Примеры". Предпочтительные фильтры отличаются повышенным показателем нагрузки масляным туманом, пониженным прониканием аэрозолей или частиц и стабильностью заряда в присутствии жидкого аэрозоля, а также малой разностью давлений через фильтр. Электретные изделия по настоящему изобретению могут быть использованы в разных случаях применения для фильтрации, в том числе в респираторах, таких как лицевые маски, бытовых и промышленных кондиционерах, печах, воздухоочистителях, пылесосах, медицинских фильтрах, фильтрах воздушных магистралей и в воздухоочистительных системах транспортных средств и электронном оборудовании, такой как компьютеры и дисководы. Изобретение относится также к респиратору, в состав которого входит электретный фильтр, содержащий: нетканое полотно, включающее электретные волокна, содержащие смесь полимера и добавки, повышающей эффективность, опорную конструкцию для размещения респиратора на пользователе и чашевидный элемент, предназначенный для установки поверх рта и носа пользователя. Такой респиратор отличается минимальным показателем при испытательном фильтровании, превышающим 400 мг диоктилфталата, что было определено при испытаниях в соответствии с методикой определения проницаемости фильтра, разработанной Национальным институтом охраны труда и здравоохранения для испытаний респираторов отрицательного давления на жидкие частицы (процедура APRS-STP-0051-00), причем либо площадь рабочей поверхности респиратора составляет примерно 180 см2, либо испытания респиратора проводят при отрегулированной до величины 180 см2 площади рабочей поверхности. К аспекту изобретения относится также промежуточный состав, который применяют для изготовления электретного фильтра. Промежуточный состав может содержать нетканое полотно из волокон, состоящих из полипропилена с показателем кристалличности менее 0,3, измеренным как отношение максимальной кристаллической интенсивности к суммарной интенсивности рассеивания при угле рассеивания, изменяющемся в диапазоне 6-36o, и добавки, повышающие эффективность. Промежуточные составы можно получать посредством смешивания и экструзии смеси, состоящей из 90-99,8 мас.% органического полимера и 0,2-10 мас. % добавки, повышающей эффективность. При этом волокна эксрудируют через головку в условиях дутья из расплава, а затем, предварительно быстро охладив их, собирают вместе с получением нетканого полотна. Краткое описание чертежей На фиг.1 показана блок-схема, иллюстрирующая процесс изготовления материала электретного фильтра по настоящему изобретению. На фиг. 2 показан график "минимального показателя при испытательном фильтровании (т.е. массы диоктилфталата (ДОФ) в миллиграммах (мг), осевшего на фильтровальной ткани, когда процент проникания диоктилфталата достигает минимального значения - далее "Min при ИФ") для образцов, отрезанных от отожженного без резкого охлаждения электретного фильтра, в зависимости от показателя кристалличности образца до отжига. Как подробно пояснено в разделе "Примеры", эти данные были получены при воздействии на фильтровальные полотна жидким аэрозолем с диоктилфталатом в приборе, измеряющем концентрацию аэрозоля до и после фильтра. Процент проникания рассчитывается делением концентрации аэрозоля, измеренной после фильтра, на концентрацию аэрозоля, измеренную до фильтра, и умножения полученного результата на 100. На фиг.3 показан график зависимости Min при ИФ для образцов, отрезанных от отожженного без резкого охлаждения электретного фильтра, от показателя кристалличности образцов до отжига. На фиг.4 показан график зависимости Min при ИФ для образцов, отрезанных от отожженного без резкого охлаждения электретного фильтра, от показателя кристалличности образца до отжига. На фиг.5 показан график зависимости Min при ИФ для образцов, отрезанных от отожженных с резким и без резкого охлаждения электретных фильтров, от показателя кристалличности образцов до отжига. На фиг.6 показан график зависимости Min при ИФ для образцов, отрезанных от отожженных с резким и без резкого охлаждения электретных фильтров, от показателя кристалличности образцов до отжига. На фиг.7 показан график зависимости Min при ИФ для образцов, отрезанных от отожженных с резким и без резкого охлаждения электретных фильтров, от показателя кристалличности образцов до отжига. На фиг.8 показан график зависимости Min при ИФ для образцов, отрезанных от отожженных с резким и без резкого охлаждения электретных фильтров, от показателя кристалличности образцов до отжига. На фиг.9 показан график зависимости Min при ИФ для образцов, отрезанных от отожженных с резким и без резкого охлаждения электретных фильтров, от показателя кристалличности образцов до отжига. На фиг.10 показан респиратор или фильтровальная лицевая маска 10, содержащая электретный фильтр по настоящему изобретению. На фиг.11 показан поперечный разрез корпуса 17 респиратора. На фиг.12 показан спектр разрядного тока теплового возбуждения для незаряженных полотен, содержащих полимер и добавку, повышающую эффективность, которые были поляризованы в электрическом поле напряженностью 2,5 кВ/мм при температуре 100oС в течение 1 минуты. Полотна были изготовлены с использованием следующих четырех технологических процессов: а) резкое охлаждение, без отжига; b) без резкого охлаждения, без отжига; с) резкое охлаждение, отжиг и d) без резкого охлаждения, отжиг. На фиг. 13а показан график зависимости показателя кристалличности для 6 образцов не подвергнутого отжигу и незаряженного полотна, содержащего полимер и добавку, повышающую эффективность, от плотности заряда образцов, которые были поляризованы в электрическом поле напряженностью 2,5 кВ/мм при температуре 100oС в течение 1 минуты, после отжига (без заряжания). На фиг. 13b показан график зависимости показателя нагрузки диоктилфталатом (в Min при ИФ) для 6 образцов подвергнутого отжигу и заряженного полотна, содержащего полимер и добавку, повышающую эффективность, от плотности заряда образцов, которые были поляризованы в электрическом поле напряженностью 2,5 кВ/мм при температуре 100oС в течение 1 минуты, после отжига (без заряжания). На фиг.14 показан спектр разрядного тока теплового возбуждения для подвергнутых отжигу и обработанных коронным разрядом неполяризованных полотен, содержащих полимер без добавки, повышающей эффективность. Образцы "а" и "b" подвергли резкому охлаждению во время технологического процесса, а образцы а' и b' - нет. Сторона А - это сторона полотна, контактирующая с верхним электродом при разряде положительного тока, а сторона В - это противоположная сторона полотна, которая при контакте с верхним электродом является источником отрицательного разрядного тока. На фиг.15 показан спектр разрядного тока теплового возбуждения прошедших отжиг и обработанных коронным разрядом полотен, содержащих неполяризованный полимер и добавку, повышающую эффективность. Образцы "а" и "b" подвергли резкому охлаждению во время технологического процесса, а образцы а' и b' - нет. Сторона А - это та же сторона полотна, что и сторона А на фиг.14 по отношению к контакту с верхним электродом, а сторона В - это противоположная сторона полотна. На фиг.16а показан спектр разрядного тока теплового возбуждения для подвергнутых отжигу, обработанных коронным разрядом и подвергнутых резкому охлаждению полотна, содержащих полимер и добавку, повышающую эффективность, поляризованных в электрическом поле напряженностью 2,5 кВ/мм при температуре 100oС в течение а) 1 минуты, b) 5 минут, с) 10 минут и d) 15 минут. На фиг.16b показан спектр разрядного тока теплового возбуждения для подвергнутых отжигу, обработанных коронным разрядом и не подвергнутых резкому охлаждению полотен, содержащих полимер и добавку, повышающую эффективность, поляризованных в электрическим поле напряженностью 2,5 кВ/мм при температуре 100oС в течение а') 1 минуты, b') 5 минут, с') 10 минут и d') 15 минут. На фиг. 17 показан график зависимости плотности заряда от времени поляризации для не подвернутых (сплошная линия) и подвергнутых (пунктирная линия) резкому охлаждению и отжигу и обработанных коронным разрядом полотен, содержащих полимер и добавку, повышающую эффективность. Подробное описание предпочтительных вариантов осуществления ИЗОБРЕТЕНИЯ Электретные изделия по настоящему изобретению содержат полимер и добавку, повышающую эффективность конечного изделия. Полимером может быть непроводящая термопластичная смола, имеющая удельное сопротивление более 1014 Ом





Получение тканей экструзией
Ниже описаны некоторые предпочтительные примеры осуществления способов изготовления электретных изделий, содержащих полимер и добавку, повышающую эффективность. Изделия в этих примерах представляют собой фильтровальные нетканые полотна, изготовленные из смеси полипропилена и фторсоединения, экструдируемой при условиях дутья из расплава и собираемой для образования микроволнистого холста, полученного аэродинамическим способом из расплава. Добавку в виде расплава фторсоединения подавали в горловину двухшнекового экструдера вместе с полипропиленом для получения расплава, содержащего примерно 11 мас.% фторсоединения. Массу полипропилена добавляли в горловину второго двухшнекового экструдера. В некоторых случаях для уменьшения вязкости добавляли также пероксид. Продукт, полученный в экструдере с фторсоединением, закачивали в экструдер с полипропиленом с такой скоростью, чтобы обеспечить общий выход примерно 1,1 мас.% от расплава фторсодержащей добавки. Температура струи расплава, содержащей расплав фторсодержащей добавки, во всех точках была ниже 290oС. Полотно изготовляли по известной технологии, аналогичной описанной Ван Вентом и др., с той лишь разницей, что применяли просверленную выходную часть оформляющего канала головки экструдера. Резкое охлаждение
Были использованы два способа резкого охлаждения, описанные ниже. Способ А
Распылительную штангу, содержащую 13 отдельных плоскоструйных насадок с наконечниками 9501 для равномерного веерного распыления, расположенных с шагом 4 дюйма (101,6 мм), установили на расстоянии 0,75 дюйма (19,05 мм) от выходной части оформляющего канала головки экструдера и на расстоянии 2,5 дюйма (63,5 мм) ниже потоков расплавляемого полимера, выходящих из головки экструдера. Каждую насадку повернули на 10o относительно поперечного направления полотна таким образом, что веера капель воды не сталкивались друг с другом и давление воды поддерживалось на минимальном уровне, обеспечивающем равномерное распыление. Способ В
Распылительную штангу системы Sonic с 15 распылительными форсунками модели SDC 035, поставляемую Sonic Environmental Corp. of Pennsauken, NJ, установили на расстоянии примерно 7 дюймов (177,8 мм) ниже осевой линии и на расстоянии 1 дюйм (25,4 мм) ниже потока, выходящего из головки экструдера. Давление воздуха установили на уровне 50 фунт-с/кв. Дюйм (345 кПа), а давление воды - на уровне 30 фунт-с/кв. Дюйм (207 кПа). Расходомеры для воды, если не определено иначе, были отрегулированы таким образом, что каждая форсунка подавала 30 мл/мин воды. Каждая форсунка подавала конус капель воды к потокам расплавленного полимера, выходящим из головки экструдера. Отжиг
Экструдированные полотна дополнительно обработали, пропустив их через печь, нагретую до средней температуры около 150oС с такой скоростью, что время выдержки в печи составляло примерно 4,5 минуты. Такой процесс отжига вызывает дополнительную кристаллизацию полимера и диффузию расплава фторсодержащей добавки к поверхностям раздела волокон. Зарядка
После отжига полотна дополнительно обработали коронным разрядом с использованием электрического поля высокого напряжения, созданного между 30 линейными источниками коронного разряда, размещенными в направлении поперек ткани, и заземляющим электродом с током коронного разряда 2,6

Толщину полотна измеряли в соответствии с методикой ASTM D 1777-64 с применением полотна массой 230 г на диске диаметром 10 см. Перепад давлений можно измерить в соответствии с процедурой ASTM F778. Базовую массу рассчитали для диска диаметром 5,25 дюймов (13,3 см). Испытание на нагрузку диоктилфталатом
Измерения нагрузки диоктилфталатом выполняли, контролируя проникание аэрозоля диоктилфталата через образец в течение длительного воздействия контролируемого аэрозоля диоктилфталата. Измерения выполняли при помощи автоматизированного тестера фильтров (АТФ) модели 8110 или 8130 (поставляемого компанией TSI Incorporated, Сент-Пол, шт. Миннесота), адаптированного к аэрозолю диоктилфталата. Процент проникания по диоктилфталату определяется следующим образом:
% проникания по диоктилфталату = 100 (концентрация диоктилфталата ниже по потоку (за фильтром - примеч. перевод.) / концентрация диоктилфталата выше по потоку (перед фильтром - примеч. перевод.)), где значения концентрации выше и ниже по потоку были измерены по рассеянию света, а процент проникания по диоктилфталату вычислили автоматически при помощи АТФ. Монодисперсные частицы аэрозоля диоктилфалата, образуемые приборами АТФ 8110 и 8130, имели средний диаметр 0,3 мкм и концентрацию выше по потоку (перед фильтром - примеч. перевод. ) 100 мг/см3, как было измерено при помощи стандартного фильтра. Все образцы испытали при выключенном ионизаторе аэрозоля и расходе через образец фильтровального полотна 85 л/мин. Методика 1 определения нагрузки фильтровального полотна диоктилфталатом
Измерения выполняли при помощи АТФ модели 8110, адаптированного к аэрозолю диоктилфталата. Экструдированное полотно разрезали на диски диаметром 6,75 дюймов (17,15 см). Два таких диска уложили непосредственно один поверх другого и установили их в держатель образцов так, что воздействию аэрозоля подвергался круг диаметром 6,0 дюймов (15,2 см). Поверхностная скорость составила 7,77 см/с. Перед тем как поместить образцы в держатель, их взвесили. Каждое испытание продолжали до появления устойчивой тенденции к увеличению процента проникания по диоктилфталату при воздействии аэрозоля этого вещества или по меньшей мере до удерживания 200 мг диоктилфталата. Процент проникания по диоктилфталату и соответствующие данные по перепаду давлений передали в подсоединенный компьютер и записали в память компьютера. После завершения испытания на нагрузку диоктилфталатом нагруженные образцы вновь взвесили, чтобы проконтролировать количество диоктилфталата, набранного образцами волокнистого полотна. Это послужило перекрестной проверкой воздействия диоктилфталата, экстраполированного на основе измеренной концентрации диоктилфталата, попавшего на волокнистое полотно, и измеренного расхода аэрозоля через полотно. Окончательные данные по нагрузке диоктилфталата были сведены в развернутую таблицу для расчета минимального значения при испытательном фильтровании (Min при ИФ). Min при ИФ определяется как общий показатель по диоктилфталату или масса диоктилфталата, попавшего на образец ткани и прошедшего через него, воздействующего на фильтровальное полотно (т.е. масса диоктилфталата на и в образце) в момент, когда процент проникания по диоктилфталату достигает минимального значения. Это значение Min при ИФ используется, чтобы характеризовать показатель нагрузки полотна диоктилфталатом. Чем выше значение Min при ИФ, тем лучше показатель нагрузки. Методика 2 определения нагрузки фильтровального полотна диоктилфталатом
Методика 2 идентична методике 1, за исключением того, что вырезают образцы диаметром 5,25 дюймов (13,34 см) и помещают их в держатель, оставляя для воздействия круг диаметром 4,5 дюйма (11,4 см), при этом поверхностная скорость составляет 13,8 см/с. При любой из процедур методик можно проводить, используя эквивалентные тестеры фильтров. Если мгновенный показатель фильтрации одинарного слоя таков, что перепад давлений составляет 8-20 мм вод. ст. (78 Па - 195 Па), а обнаруживаемое проникание - менее 36% проникания по диоктилфталату при измерении для площади воздействия 102,6 см2 и расхода 85 л/мин с применением АТФ модели TSI 8110 с включенным ионизатором, можно также испытывать одинарные, а не сдвоенные слои фильтровального полотна. Любая из методик включает испытания фильтров с меньшей площадью поверхности при помощи держателя образцов, в котором фильтровальную среду можно установить таким образом, чтобы обеспечить эквивалентную площадь, подвергаемую воздействию (т.е. 102,6 см2 для методики 2). Определение показателя кристалличности полимера
Данные о кристалличности были собраны с использованием вертикального дифрактометра рентгеновских лучей, выпускаемого компанией Philips, излучения "Сu-Ка" и реестра рассеянного излучения для пропорционального детектора. Использовали дифрактометр с впускными щелями разных размеров, приемной щелью постоянного размера и монохроматором подвергшихся дифракции лучей. Рентгеновская установка работала в режиме 45 кВ и 35 мА. Пошаговое сканирование проводили от 5o до 40o (2q) с шагом 0,05o и 5-секундным временем отсчета. Образцы установили на алюминиевых держателях, использовав ленту с двойным покрытием и не подложив под образец ткани никакую подложку или основу. Наблюдаемые данные по рассеянным лучам сократили до пар х-у значений угла рассеяния и интенсивности и на основе этих пар определили профиль излучения при помощи программного обеспечения OriginTM для анализа данных (поставляемого компанией Microcal Software Inc., Northampton MA). Для описания шести имеющих альфа-форму пиков, соответствующих полипропилену, и пиков аморфных включений применили гауссову модель формы пика. Для некоторых групп данных единственный пик, соответствующий аморфной среде, не соответствует адекватно интенсивности рассеянного излучения не альфа-формы. В этих случаях для полного соответствия наблюдаемой интенсивности применяли дополнительные широкие максимумы. Эти широкие изогнутые участки обязаны своим появлением, главным образом, мезоморфной форме полипропилена (сведения о мезоморфном полипропилене см. в патенте США 4931230, Крюгер (Krueger) и др. , и в документах, на которые приведены ссылки в этом патенте). Рассеяние вследствие мезоморфного характера полипропилена сочеталось с рассеянием от аморфных зон. Показатели кристалличности рассчитывались как отношение площади пика, соответствующей кристаллической структуре, к общей интенсивности рассеяния (для кристаллической структуры и аморфной среды) в диапазоне углов рассеяния от 6 до 36o (2q). Значение "1" соответствует 100%-ной кристалличности, а "0" - отсутствию кристаллической структуры. Разрядный ток теплового возбуждения
Исследования разрядного тока теплового возбуждения проводили при помощи прибора Solomat TSC/RMA модели 91000 с поворотным электродом, поставляемого компанией TherMold Partners, L.P., Thermal Analysis Instruments of Stanford, СТ. Образцы ткани вырезали и поместили между электродами в прибор Solomat TSC/RMA. В приборе Solomat термометр размещается рядом с образцом, но не касается его. Образцы полотна должны быть оптически плотными, в них не должны быть видны сквозные отверстия. Образцы должны быть достаточно большими, чтобы полностью закрыть верхний контактный электрод. Поскольку диаметр электрода составляет примерно 7 мм, следует вырезать образцы диаметром более 7 мм. Для обеспечения хорошего контакта с электродами образцы полотна сжимают по толщине с коэффициентом 10. Из камеры с образцом откачивают воздух, после чего в нее закачивают гелий при давлении примерно 1100. Охлаждение осуществляют жидким азотом. Методика 1 определения разрядного тока теплового возбуждения
Изделие поляризуют при температуре 100oС в течение 1 минуты в электрическом поле с напряженностью 2,5 кВ/мин в приборе, описанном выше. При наличии электрического поля образец быстро охлаждают (с максимальной скоростью, которую может обеспечить прибор) до -50oС. Образец выдерживают при температуре -50oС в течение 5 минут при выключенном электрическом поле, затем нагревают со скоростью 3oС/мин, измеряя разрядный ток. Плотности заряда можно рассчитать на основе каждого пика спектра разрядного тока теплового возбуждения, проведя базовую линию между минимумами на каждой стороне выбранного пика и выполнив интегрирование по площади пика. Методика 2 определения разрядного тока теплового возбуждения
Разрядный ток неполяризованного изделия измеряют, начиная с температуры 25oС и нагревая изделие со скоростью 3oС/мин. Два образца изделия испытывают идентично, за исключением того, что образцы ориентируют в противоположных направлениях, размещая их между электродами. Расположение(я) пиков измеряют для изделия, которое было ориентировано так, чтобы давать положительный разрядный ток при температурах выше 110oС (например, сторона В на фиг.15). Температуру плавления изделия определяют при помощи дифференциальной сканирующей калориметрии, проводимой при нагреве изделия со скоростью 10oС/мин, по максимуму пика, возникающего вследствие плавления и наблюдаемого во втором цикле нагрева при калориметрии (т.е. по пику, наблюдаемому после нагрева до температуры выше температуры плавления, охлаждения изделия и повторного его нагрева). Методика 3 определения разрядного тока теплового возбуждения
Образец исследуют в соответствии с методикой 2 определения разрядного тока теплового возбуждения для установления правильной ориентации образца. Затем изделия ориентируют в приборе Solomat TSC в направлении, при котором создается положительный разрядный ток при более низком пике температуры в методике 2. Затем изделия испытывают в соответствии с методикой 1 с той лишь разницей, что каждый образец поляризуют при температуре 100oС в течение 1, 5, 10 или 15 минут. Значение ширины каждого пика на половине высоты рассчитывают, проводя базовую линию с крутизной от 0 до 30oС и измеряя ширину пика на половине его высоты. Методика 4 определения разрядного тока теплового возбуждения
Эта методика идентична методике 3, за исключением того, что плотность заряда изделия в каждый момент поляризации рассчитывают, проводя базовую линию между минимумами на каждой стороне выбранного пика или выполняя интегрирование по площади пика, если нет минимумов на стороне пика, соответствующей высокой температуре, где кривая реально пересекает уровень нулевого тока или такое пересечение определяется посредством экстраполяции кривой. Сравнительные примеры 1-3
Примеры 1-3 демонстрируют, что улучшенный показатель нагрузки можно достичь посредством отжига полимера и повышающей эффективность добавки, повышающей эффективность и содержащей составы, имеющие относительно низкий показатель кристалличности. Пример 1
Нетканое фильтровальное полотно изготовили из полимера Exxon Escorene 3505G, поставляемого компанией Exxon Chemical, и фторсоединения, обеспечив производительность 50 фунт/ч (23 кг/ч) при температуре плавления 288oС и применив 48-дюймовую (121,9 см) просверленную выходную часть оформляющего канала головки экструдера. Получили полотно, имеющее поверхностную плотность 71 г/м2, толщину 1,3 мм и перепад давлений 6,6 мм вод. ст. (65 Па), измеренный при поверхностной скорости 13,8 см/с. После отжига и зарядки полотна, как было описано выше, провели определение нагрузки диоктилфталатом для двухслойных образцов диаметром 5,25 дюйма (13,34 см), взятых в шести местах по ширине полотна. Показатель кристалличности полипропилена определили для образцов, вырезанных в тех же шести местах полотна (позиции 1, 4 и 6) и после (позиции 1-6) отжига. Данные по нагрузке (значение Min при ИФ) и показатели кристалличности для шести позиций приведены в таблице 1, а график зависимости показателя кристалличности неотожженного изделия от значений Min при ИФ для позиций 1, 4 и 6 приведен на фиг.2. Как следует из значений, приведенных в таблице 1 для позиций 1, 4 и 6, и графика, приведенного на фиг.2, существует корреляция между показателем нагрузки диоктилфталатом (выраженной в значениях Min при ИФ) и показателем кристалличности полотна до отжига. Чем ниже показатель кристалличности до отжига, тем выше значение Min при ИФ. С другой стороны, как следует из таблицы 1, корреляция между показателем кристалличности полотна после отжига и показателем нагрузки диоктилфталатом (выраженной в значениях Min при ИФ) отсутствует. Пример 2
Из полученных аэродинамическим способом из расплава микроволокон изготовили полотно и обработали, как описано в примере 1. Полотно имело поверхностную плотность 74 г/м2, толщину 1,4 мм и перепад давлений 7,0 мм вод. ст. (69 Па), измеренный при поверхностной скорости 13,8 см/с. Полотно подвергли испытаниям на нагрузку диоктилфталатом и проанализировали показатель кристалличности, как показано в примере 1. Результаты испытаний приведены в таблице 2 и на фиг.3. Из таблицы 2 и фиг.3 опять следует наличие общей тенденции - более низкие показатели кристалличности неотожженного состава коррелируются с показателем нагрузки диоктилфталатом. Для отожженных фильтров такая корреляция не наблюдается. Пример 3
Из полученных аэродинамическим способом из расплава микроволокон подготовили полотно и обработали, как показано в примере 1, за исключением того, что использовали полипропилен Fina 3860, поставляемый компанией Fina Oil and Chemical, а концентрат пероксида, содержащий 2,5-диметил-2,5-ди(трибутилперокси)гексан, подавали совместно с полипропиленом в экструдер для регулирования реологии расплава полипропилена и физических параметров полотна, получаемого аэродинамическим способом из расплава (дутьем из расплава). Полотно имело поверхностную плотность 73 г/м2, толщину 1,4 мм и перепад давлений 7,0 мм вод. ст. (69 Па), измеренный при расходе 85 л/мин. Полотно подвергли испытаниям на нагрузку диоктилфталатом и проанализировали показатель кристалличности, как показано в примере 1. Результаты испытаний приведены в таблице 3 и на фиг.4. Из таблицы 3 и фиг.4 опять следует наличие общей тенденции - корреляция между более низкими показателями кристалличности неотожженного изделия и лучшим показателем нагрузки диоктилфталатом. Для отожженных фильтров такая корреляция не наблюдается. Примеры 4-8
На примерах 4-8 продемонстрировано, что существует корреляция между резким охлаждением или низкой кристалличностью неотожженных волокон (т.е промежуточного состава) и превосходными характеристиками нагрузки отожженных электретных фильтровальных полотен масляным туманом. Пример 4
Из полученных аэродинамическим способом из расплава микроволокон изготовили полотно и обработали, как показано в примере 1. Полотно имело поверхностную плотность 69 г/м2, толщину 1,3 мм и перепад давлений 6,2 мм вод. ст. (61 Па), измеренный при поверхностной скорости 13,8 см/с. После того как было собрано достаточное количество полотна для дальнейшей обработки и испытаний, экструдат обрызгали водой по способу А, описанному выше. Воду очищали за счет обратного осмоса и применяли деионизацию. В этом эксперименте распылительную штангу размещали лишь на 2/3 ширины экструдера. Для обеспечения требуемых параметров полотна коллектор перемещали в диапазоне от 12 до 8 дюймов. Полотна подвергли испытаниям на нагрузку диоктилфталатом и проанализировали показатель кристалличности, как показано в примере 1. Результаты испытаний приведены в таблицах 4А и 4В и на фиг.5. Из данных, приведенных в таблицах 4А и 4В, следует, что резкое охлаждение приводит к снижению показателя кристалличности экструдированных волокон. Отжиг состава с низким показателем кристалличности улучшает показатель нагрузки отожженного и заряженного фильтровального полотна. Из приведенных в таблицах данных видно также, что отжиг составов с показателем кристалличности ниже приблизительно 0,3 обеспечивает электретные фильтры с превосходным показателем нагрузки. А именно, отжиг полотен, имеющих показатель кристалличности ниже приблизительно 0,3, дает фильтры со средним значением Min при ИФ более 200 мг, а отжиг полотен, имеющих показатель кристалличности выше приблизительно 0,3, - к получению тканей со средним значением Min при ИФ менее 200 мг. Пример 5
Из полученных аэродинамическим способом из расплава микроволокон изготовили полотно и обработали, как показано в примере 1, за тем исключением, что расход при экструзии поддерживали на уровне 100 фунт/ч (45 кг/ч) и, как в примере 3, добавляли пероксид для регулирования реологии расплава полипропилена и физических параметров полотна, полученного аэродинамическим способом из расплава (дутьем из расплава). Полотно имело поверхностную плотность 73 г/м2, толщину 1,3 мм и перепад давлений 6,6 мм вод. ст. (65 Па), измеренный при поверхностной скорости 13,8 см/с. После того как было подготовлено достаточное количество полотна для дальнейшей обработки и испытаний (см. примеры в таблице 5А), экструдат обрызгали водой по способу В, описанному выше. Распылительную штангу разместили по всей ширине полотна, имеющего поверхностную плотность 74 г/м2, толщину 1,3 мм и перепад давлений 6,2 мм вод. ст. (61 Па), измеренный при расходе 85 л/мин. Для обеспечения требуемых параметров полотна коллектор перемещали в диапазоне от 12 до 11 дюймов (30-28 см). Применяли неочищенную водопроводную воду. Полотна подвергли испытаниям на нагрузку диоктилфталатом и проанализировали показатель кристалличности, как показано в примере 1, за тем исключением, что для испытания на нагрузку диоктилфталатом применяли круги полотна диаметром 6,75 дюймов (17, 15 см). Результаты испытаний приведены в таблицах 5А и 5В и на фиг.6. Как и в примере 4, из данных, приведенных в таблицах 5А и 5В, следует, что резкое охлаждение снижает показатель кристалличности неотожженного полотна и улучшает показатель нагрузки отожженного и заряженного полотна. Из приведенных в таблицах данных видно также, что отжиг полотен, имеющих показатель кристалличности ниже приблизительно 0,3, даст фильтры со средним значением Min при ИФ более 200 мг, а отжиг полотен, имеющих показатель кристалличности выше приблизительно 0,3, даст фильтры со средним значением Min при ИФ менее 200 мг. Из данных следует также, что применение составов с более низкой кристалличностью, в частности с показателем кристалличности примерно 0,1, может привести к дополнительному улучшению показателя нагрузки. Например, некоторые электретные фильтры могут иметь значение Min при ИФ более 500 мг. Пример 6
Из полученных аэродинамическим способом из расплава микроволокон изготовили полотно и обработали, как показано в примере 1. Полотно имело поверхностную плотность 73 г/м2, толщину 1,3 мм и перепад давлений 7,0 мм вод. ст. (69 Па), измеренный при поверхностной скорости 13,8 см/с. После того, как было подготовлено достаточное количество полотна для дальнейшей обработки и испытаний, экструдат обрызгали водой по способу В, описанному выше в примере 5. Для обеспечения требуемых параметров полотна коллектор перемещали в диапазоне от 10 до 8,5 дюймов (от 25 см до 21,6 см). С использованием распыления воды получили полотно, имеющее поверхностную плотность 71 г/м2, толщину 1,4 мм и перепад давлений 6,6 мм вод. ст. (65 Па), измеренный при расходе 85 л/мин. Полотна подвергли испытаниям на нагрузку диоктилфталатом и проанализировали показатель кристалличности, как показано в примере 5. Результаты испытаний приведены в таблицах 6А и 6В и на фиг.7. Как и в примерах 4-7, из данных, приведенных в таблицах 6А и 6В, следует, что резкое охлаждение снижает показатель кристалличности неотожженного полотна и улучшает показатель нагрузки отожженного и заряженного полотна. Из приведенных в таблицах данных видно также, что отжиг полотен, имеющих показатель кристалличности ниже приблизительно 0,3, дает фильтры со средним значением Min при ИФ более 200 мг, а отжиг полотен, имеющих показатель кристалличности выше приблизительно 0,3, - фильтры со средним значением Min при ИФ менее 200 мг. Из данных следует также, что некоторые электретные фильтры, изготовленные из резко охлажденных материалов, могут иметь значение Min при ИФ более 500 мг, а отдельные фильтры - даже более 800 мг. Пример 7
Из полученных аэродинамическим способом из расплава микроволокон изготовили полотна и обработали, как в примере 6, с разбрызгиванием и без разбрызгивания воды по способу В. В этом примере воду очищали посредством обратного осмоса и деионизации. Получили полотно с параметрами, аналогичными параметрам, полученным в примере 6. Полотна подвергли испытаниям на нагрузку диоктилфталатом и проанализировали показатель кристалличности, как показано в примере 6. Результаты испытаний приведены в таблицах 7А и 7В и на фиг.8. Как и в примерах 4-6, из данных, приведенных в таблицах 7А и 7В, следует, что резкое охлаждение снижает показатель кристалличности неотожженного полотна и улучшает показатель нагрузки отожженного и заряженного полотна. Из приведенных в таблицах данных видно также, что отжиг полотен, имеющих показатель кристалличности ниже приблизительно 0,3, дает фильтры со средним значением Min при ИФ более 200 мг, а отжиг полотен, имеющих показатель кристалличности выше приблизительно 0,3, - фильтры со средним значением Min при ИФ менее 200 мг. Из данных следует также, что некоторые электретные фильтры, изготовленные из резко охлажденных материалов, могут иметь значение Min при ИФ более 500 мг, а отдельные фильтры - даже более 800 мг. Пример 8
Из полученных аэродинамическим способом из расплава микроволокон изготовили полотна и обработали, как в примере 7, с разбрызгиванием и без разбрызгивания воды по способу В. Получили полотно с характеристиками, аналогичными характеристикам, полученным в примере 7. Полотна подвергли испытаниям на нагрузку диоктилфталатом и проанализировали показатель кристалличности, как показано в предыдущих примерах. Результаты испытаний приведены в таблицах 8А и 8В и на фиг.9. Как и в примерах 4-7, из данных, приведенных в таблицах 8А и 8В, следует, что резкое охлаждение снижает показатель кристалличности неотожженного полотна и улучшает показатель нагрузки отожженного и заряженного полотна. Из приведенных в таблицах данных видно также, что отжиг полотен, имеющих показатель кристалличности ниже приблизительно 0,3, дает фильтры со средним значением Min при ИФ более 200 мг, а отжиг полотен, имеющих показатель кристалличности выше приблизительно 0,3, - фильтры со средним значением Min при ИФ менее 200 мг. Из данных следует также, что некоторые электретные фильтры, изготовленные из резко охлажденных материалов, могут иметь значение Min при ИФ более 500 мг. В таблицах 9А и 9В показаны усредненные данные Min при ИФ, относящиеся к примерам 4-8, для образцов, не подвергаемых и подвергаемых резкому охлаждению. Из усредненных данных, приведенных в таблицах 9А и 9В с учетом значений показателя кристалличности, приведенных в предыдущих таблицах, следует, что резкое охлаждение может привести к снижению показателя кристалличности неотожженного полотна ниже приблизительно 0,3, а также, что отжиг полотен, имеющих показатель кристалличности ниже приблизительно 0,3, даст фильтры со средним значением Min при ИФ более 200 мг, а отжиг полотен, имеющих показатель кристалличности выше приблизительно 0,3, - фильтры со средним значением Min при ИФ менее 200 мг. Примеры 9 и 10
Примеры 9 и 10 показывают, что введение добавки, повышающей эффективность, даст сильный сигнал в спектре разрядного тока теплового возбуждения. Нетканое полотно изготовили, как в примере 4 (применив резкое охлаждение). Второй образец изготовили точно так же, но при этом не вводилась добавка, повышающая эффективность. Оба образца полотна исследовали в соответствии с методикой 1 определения разрядного тока теплового возбуждения. Образец, содержащий добавку, повышающую эффективность, показал значительный пик разрядного тока при температуре около 110oС. По сравнению с ним полотно, не содержащее добавку, повышающую эффективность, не показало такой значительный пик. Это наблюдение говорит о том, что разрядный ток в образце, содержащем добавку, повышающую эффективность, создается вследствие деполяризации этой добавки при нагревании. Полагают, что добавку, повышающую эффективность, следует поляризовать во время операции поляризации. Примеры 11-15
Примеры 11-15 показывают, что резко охлажденные полотна после поляризации имеют более высокую плотность заряда, чем полотна, не подвергаемые резкому охлаждению. Образцы "а" (резко охлажденные, не прошедшие отжиг) и образцы "с" (резко охлажденные, отожженные) были идентичны соответствующим образцам примера 4, позиция 4 (за тем исключением, что не выполняли обработку коронным разрядом). Образец "b" (не прошедший резкое охлаждение и отжиг) был идентичен образцу примера 2, позиция 4 (за тем исключением, что не выполняли обработку коронным разрядом), а образец "d" (не прошедший резкое охлаждение, отожженный) идентичен образцу примера 2, позиция 6 (за тем исключением, что не выполняли обработку коронным разрядом). Все образцы полотна исследовали в соответствии с методикой 1 определения разрядного тока теплового возбуждения. Спектр разрядного тока теплового возбуждения, полученный в результате испытаний, показан на фиг.12. Значения плотности заряда можно рассчитать на основе каждого пика спектра разрядного тока теплового возбуждения, проведя базовую линию между минимумами на каждой стороне выбранного пика и выполнив интегрирование по площади пика. Как видно из спектра, показанного на фиг.12, разрядный ток постепенно возрастает по мере приближения температуры к точке плавления испытуемого образца. Образцы не прошедших обработку коронным зарядом и отжиг полотен примера 7 испытали, как описано для примеров 11-15, как для полотен без резкого охлаждения (позиции 2 и 6), так и для полотен с резким охлаждением (позиции 3, 4, 5 и 6) резкое. Плотность заряда ни одного из полотен, не прошедших резкое охлаждение, не превысила 10 мкКл/м2. График зависимости показателей кристалличности от плотности заряда для не подвергавшихся отжигу и обработке коронным разрядом полотен показан на фиг.13а. Как следует из фиг.13а, не прошедшие отжиг полотна, имеющие относительно низкий показатель кристалличности, имеют более высокую плотность заряда, определяемую в соответствии с методикой 1 определения разрядного тока теплового возбуждения. График зависимости показателя нагрузки отожженных заряженных полотен диоктилфталатом (выраженного в значении Min при ИФ) от плотности заряда отожженных незаряженных полотен показан на фиг.13b. Фиг.13b показывает совершенно удивительный результат, заключающийся в том, что отожженные, незаряженные полотна, имеющие плотность заряда выше приблизительно 10 мкКл/м2, как было определено в соответствии с методикой 1 определения разрядного тока теплового возбуждения, имеют также превосходный показатель нагрузки диоктилфталатом после зарядки. Примеры 17 и 18
Примеры 17 и 18 соответствуют спектрам разрядного тока теплового возбуждения подвергнутых и не подвергнутых резкому охлаждению отожженных полотен без повышающей эффективность добавки, прошедших обработку коронным разрядом. Подвергнутые (а, b) и не подвергнутые (а', b') резкому охлаждению полотна изготовили, как описано в примере 4, за тем исключением, что не вводили добавку, повышающую эффективность. Спектры разрядного тока теплового возбуждения для неполяризованных полотен, полученные в соответствии с методикой 2, показаны на фиг.14. 3нак разрядного тока (плюс или минус) зависит от ориентации полотна в испытательном приборе при коронном разряде. Примеры 19 и 20
Примеры 19 и 20 иллюстрируют спектры разрядного тока теплового возбуждения подвергнутых и не подвергнутых резкому охлаждению выполненных из полимера и повышающей эффективность добавки отожженных полотен, прошедших обработку коронным разрядом. Подвергнутые (а, b) и не подвергнутые (а', b') резкому охлаждению полотна изготовили, как в примере 8, позиция 1. Исследование полотен проводилось по разрядному току теплового возбуждения согласно методике 1. Результаты исследований по разрядному току теплового возбуждения показаны на фиг.15. Во время испытаний в качестве части методики определения посредством дифференциальной сканирующей калориметрии определяли температуру плавления испытуемого изделия, она составила в этом случае 159oС. Как следует из фиг.15, при ориентации, обеспечивающей положительный разрядный ток при температуре выше приблизительно 110oС, спектр разрядного тока, подвергнутое резкому охлаждению полотно (а) имеет относительно узкий пик при приблизительно 137oС. Из этого спектра видно, что резкое охлаждение приводит к сужению распределения энергии участков захвата носителей заряда в отожженном и заряженном полотне. Для сравнения в спектре не подвергнутого резкому охлаждению полотна (а') имеется только очень широкий пик в области существенно более низкой температуры (примерно 120oС), что указывает на относительно широкое распределение энергетических уровней участков захвата носителей заряда. Таким образом, изделия по настоящему изобретению могут отличаться ярко выраженным пиком тока с центром приблизительно на 15-30oС ниже температуры плавления изделия, как было определено в соответствии с методикой 2 определения разрядного тока теплового возбуждения. Как следует из ранее приведенных результатов определения нагрузки диоктилфталатом, полотна, изготовленные из резко охлажденных (или имеющих относительно низкий показатель кристалличности) промежуточных материалов, обладают значительно повышенным показателем нагрузки диоктилфталатом по сравнению с полотнами, изготовленными из не подвергаемых резкому охлаждению (или имеющих относительно высокий показатель кристалличности) промежуточных материалов. В результате авторы изобретения неожиданно обнаружили характерную спектральную особенность (т. е. описанный выше пик тока), который коррелируется с повышенным показателем нагрузки диоктилфталатом. Примеры 20 и 21
Примеры 20 и 21 показывают спектры подвергнутых (фиг.16а) и не подвергнутых (фиг.16b) резкому охлаждению изделий и иллюстрируют спектральные особенности, которые могут характеризовать некоторые изделия по настоящему изобретению. Эти примеры представляют собой полотна, описанные в примере 8, позиция 3 (подвергнутые и не подвергнутые резкому охлаждению). Исследования разрядного тока теплового возбуждения провели в соответствии с методикой 3 определения разрядного тока теплового возбуждения. Изделия, представленные на фиг.16а, различаются только значениями времени поляризации: а - 1 минута, b - 5 минут, с - 10 минут и d - 15 минут, что относится также и к изделиям, представленным на фиг.16b: a' - 1 минута, b' - 5 минут, с' - 10 минут и d' - 15 минут. В спектрах разрядного тока теплового возбуждения, показанных на фиг.16а, ширина пиков на половине высоты составляет 18 (b), 14 (с) и 19 (d) для значений времени поляризации 5, 10 и 15 минут соответственно. Эти три пика имеют максимум при температуре 140 или 141oС. Для сравнения на фиг.16b показаны спектры не подвергавшихся резкому охлаждению сравнительных образцов, ширина пиков на половине высоты которых составляет 40 (b'), 32 (с') и 34 (d') для значений времени поляризации 5, 10 и 15 минут соответственно, а пики находятся в области температур 121, 132 и 136oС. Превосходный показатель нагрузки резко охлажденных изделий рассмотрен выше в связи с испытаниями на нагрузку диоктилфталатом. Таким образом, фиг.16а и 16b и испытания полотен на нагрузку диоктилфталатом свидетельствуют об удивительном открытии, заключающемся в том, что изделие, отличающееся шириной пика разрядного тока теплового возбуждения менее 30oС (как установлено по методике определения 3) коррелирует с превосходным показателем нагрузки масляным туманом. Как следует из полученных результатов, изделия, имеющие более узкое распределение энергетических уровней захвата носителей заряда, коррелируются с улучшенным показателем нагрузки. Таким образом, более предпочтительные изделия имеют ширину пиков менее 25oС, а еще более предпочтительные - менее 20oС. Как следует из полученных данных, по меньшей мере для изделий, содержащих полипропилен, существует корреляция между положением пика спектра и показателем нагрузки. Предпочтительны изделия с пиками спектров приблизительно при 138-142oС. Примеры 22 и 23
Другие группы данных по разрядному току теплового возбуждения были получены для образцов, изготовленных и испытанных, как в примерах 20 и 21. Значения плотности заряда рассчитали для каждого конкретного условия испытаний в соответствии с методикой 4 определения разрядного тока теплового возбуждения. Результаты расчетов приведены в таблице 10 и на фиг.17. Сравнение значений плотности заряда изделий, подвергнутых и не подвергнутых резкому охлаждению, как было определено в соответствии с методикой 4 определения, с соответствующими данными испытания на нагрузку диоктилфталатом, неожиданно дает корреляцию между изменением плотности заряда при поляризации изделия и показателем нагрузки. Как следует из фиг.17, резко охлажденные (обладающие превосходным показателем нагрузки) изделия (пунктирные линии) дают повышенную плотность заряда, если изделие подвергали поляризации в течение 1-10 минут. Напротив, не подвергнутые резкому охлаждению (более низкий показатель нагрузки) изделия (сплошные линии) дают меньшую плотность заряда, если их подвергают поляризации в течение того же периода. Таким образом, характеристикой предпочтительных изделий по настоящему изобретению является повышение плотности заряда в течение 1-5 и(или) 5-10 минут поляризации, как было определено в соответствии с методикой 4 определения зарядного тока теплового возбуждения. Полные описания всех патентов и заявок на патенты, упомянутых здесь, считаются включенными в объем настоящего описания посредством ссылок. Настоящее изобретение может иметь различные модификации и изменения без отступления от его сущности и объема. Соответственно, настоящее изобретение не должно быть ограничено вышеприведенными примерами, но должно регулироваться ограничениями, установленными в формуле изобретения, и любыми его эквивалентами.
Формула изобретения



5. Изделие по любому из пп.1-4, отличающееся тем, что оно содержит 95-99,5 мас.% полипропилена и 0,5-5 мас.% фторсоединения. 6. Изделие по любому из пп.1-5, отличающееся тем, что полимер выбран из группы, состоящей из полипропилена, поли(4-метил-1-пентена), линейного полиэтилена низкой плотности, полистирола, поликарбоната, сложного полиэфира и их сочетаний. 7. Изделие по любому из пп.1-6, отличающееся тем, что полимер состоит по существу из полипропилена. 8. Изделие по любому из пп.1-7, отличающееся тем, что оно имеет плотность заряда, увеличивающуюся при поляризации в течение 1-5 мин. 9. Электретное изделие по любому из пп.1-8, отличающееся тем, что оно представляет собой волокна, полученные аэродинамическим способом из расплава. 10. Электретное изделие по п.9, отличающееся тем, что оно выполнено в виде нетканого волокна. 11. Изделие по любому из пп.1-8, отличающееся тем, что оно представляет собой волокна. 12. Изделие по любому из пп.9-11, отличающееся тем, что волокна имеют структуру в виде сердцевины и оболочки, причем оболочка содержит 95-99,5 мас.% полипропилена и 0,5-5 мас.% фторсоединения. 13. Электретный фильтр, содержащий нетканое полотно из волокон по любому из пп. 1-10 и имеющий начальную обнаруживаемую проницаемость по диоктилфталату менее 5% и среднее значение минимального показателя при испытательном фильтровании более 200 мг диоктилфталата, при этом экструдированное полотно фильтра, предварительно взвешенное, подвергают воздействию аэрозоля диоктилфталата с поверхностной скоростью 7,77 см/с до появления устойчивой тенденции к увеличению процента проникания по диоктилфталату или по меньшей мере до удерживания 200 мг диоктилфталата, процент проникания по диоктилфталату и данные по перепаду давления заносятся в компьютер, а количество диоктилфталата, набранного образцами волокнистого полотна, контролируется взвешиванием и на основе полученных данных определяется минимальный показатель при испытательном фильтровании как общий показатель по диоктилфталату или масса диоктилфталата, попавшего на образец ткани и прошедшего через него, воздействующего на фильтровальное полотно в момент, когда процент проникания по диоктилфталату достигает минимального значения, которое используется для характеристики показателя нагрузки полотна диоктилфталатом. 14. Электретный фильтр по п.13, отличающийся тем, что он имеет перепад давлений менее 118 Па. 15. Электретный фильтр по п.13, отличающийся тем, что он имеет начальную обнаруживаемую проницаемость по диоктилфталату менее 5% и значение минимального показателя при испытательном фильтровании приблизительно 800-1000 мг диоктилфталата, при этом экструдированное полотно фильтра, предварительно взвешенное, подвергают воздействию аэрозоля диоктилфталата с поверхностной скоростью 7,77 см/с до появления устойчивой тенденции к увеличению процента проникания по диоктилфталату или по меньшей мере до удерживания 200 мг диоктилфталата, процент проникания по диоктилфталату и данные по перепаду давления заносятся в компьютер, а количество диоктилфталата, набранного образцами волокнистого полотна, контролируется взвешиванием и на основе полученных данных определяется минимальный показатель при испытательном фильтровании как общий показатель по диоктилфталату или масса диоктилфталата, а попавшего на образец ткани и прошедшего через него, воздействующего на фильтровальное полотно в момент, когда процент проникания по диоктифталату достигает минимального значения, которое используется для характеристики показателя нагрузки полотна диоктилфталатом. 16. Электронное оборудование, содержащее в качестве фильтра нетканое полотно или электретный фильтр по любому из пп.1-15. 17. Респиратор с электретным фильтром, содержащий нетканое полотно, включающее электретные волокна, содержащие смесь полимера и добавки, повышающей эффективность, опорную конструкцию для установки респиратора на лице пользователя и чашевидный элемент, предназначенный для установки поверх рта и носа пользователя, причем респиратор имеет значение минимального показателя при испытательном фильтровании более 400 мг диоктилфталата и имеет рабочую площадь поверхности приблизительно 180 см2, либо респиратор испытывают при рабочей поверхности, отрегулированной до величины 180 см2. 18. Респиратор по п.17, отличающийся тем, что он имеет перепад давлений менее 127 Па, причем добавка, повышающая эффективность, представляет собой фторсоединение, а полимер является полипропиленом. 19. Электретное изделие, содержащее полимер и добавку, повышающую эффективность, при этом электретный материал в изделии имеет спектр разрядного тока теплового возбуждения с пиком при температуре ниже приблизительно на 15-30oС температуры плавления изделия. 20. Изделие по п.19, отличающееся тем, что добавка, повышающая эффективность, содержит фторсоединение, при этом изделие имеет спектр разрядного тока теплового возбуждения с пиком при температуре ниже приблизительно на 15-25oС температуры плавления изделия. 21. Изделие по п.19, отличающееся тем, что полимер является полипропиленом, а спектр разрядного тока теплового возбуждения имеет пик приблизительно при 130-140oС. 22. Электретное изделие по п.19 или 20, отличающееся тем, что оно представляет собой волокна, полученные аэродинамическим способом из расплава. 23. Электретное изделие по п.22, отличающееся тем, что оно представляет собой нетканое полотно. 24. Нетканое полотно, используемое в электретном изделии по любому из пп.19-23, в качестве фильтра в респираторе. 25. Промежуточный продукт для изготовления электретного фильтра, содержащий нетканое полотно из волокон, состоящих из полимера с показателем кристалличности менее 0,3, как определено по отношению интенсивности пика, соответствующего кристаллической структуре, к интенсивности общего рассеяния в диапазоне углов рассеяния 6-36o, и добавки, повышающей эффективность. 26. Промежуточный продукт по п.25, отличающийся тем, что добавка, повышающая эффективность, является фторсоединением. 27. Промежуточный продукт по п.25 или 26, отличающийся тем, что показатель кристалличности составляет около 0-0,2. 28. Промежуточный продукт по п.27, отличающийся тем, что полимер является полипропиленом. 29. Промежуточный продукт по п.25 или 26, отличающийся тем, что имеет плотность заряда по меньшей мере около 10 мкКл/м2, при этом плотность заряда определяется по разрядному току теплового возбуждения фильтра, поляризованного при температуре 100oС в электрическом поле с напряженностью 2,5 кВ/мин, с последующим его охлаждением до - 50oС и дальнейшим нагреванием со скоростью 3oС в минуту. 30. Электретное изделие, выполненное из промежуточного продукта по любому из пп.25-30.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18, Рисунок 19, Рисунок 20, Рисунок 21, Рисунок 22, Рисунок 23, Рисунок 24, Рисунок 25, Рисунок 26, Рисунок 27, Рисунок 28