Защищенные производные октреотида
Описаны производные октреотида общей формулы (1), где (D)A представляет собой остаток D-(Nindole-формил)триптофана; R1 - атом водорода или трет-бутоксикарбонильная группа либо группа вида -СО-ОХ1, где X1 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил; R2= -CO-OX2, где X2 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил; R3 и R4 одновременно принимают значения -CH2-NH-CO-Y, где Y - метил, алкил С1-С5, фенил, замещенный фенил, либо вместе составляют дисульфидную связь; R5 представляет собой атом водорода либо группу вида -СО-ОХ3, где X3 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил. Новые защищенные производные октреотида являются исходными соединениями для более эффективного и простого получения октреотида с улучшенным выходом. 2 табл.

где (D)A представляет собой остаток D-(Nindole-формил)триптофана; R1 есть атом водорода или трет-бутоксикарбонильная группа, либо группа вида -СО-ОХ1, где X1 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил; R2=-CO-OX2, где Х2 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил; R3 и R4 одновременно принимают значения -CH2-NH-CO-Y, где Y есть метил, алкил C1-C5, фенил, замещенный фенил, либо вместе составляют дисульфидную связь; R5 представляет собой атом водорода, либо группу вида -СО-ОХ3, где X3 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил. Октреотид I является синтетическим аналогом соматостатина, который обладает сходным профилем фармакологической активности, но значительно превосходит природный пептид по силе и длительности действия. Подобно соматостатину он ингибирует секрецию пептидных гормонов гастропанкреатической эндокринной системы (инсулина, глюкагона, гастрина и пр.), а также гормона роста. Октреотид применяется как лекарственное средство для лечения акромегалии, опухолей гастропанкреатической эндокринной системы, а также используется как действенное средство профилактики осложнений в панкреатической хирургии. Хелатные аналоги октреотида, меченные радиоактивными изотопами, например, индия, рения и технеция, применяются для локализации опухолей методами компьютерной сцинтиграфии. Октреотид представляет собой циклический октапептид следующей структуры:
Особенностями его структуры являются: - наличие двух D-аминокислот;- наличие дисульфидного цикла;
- восстановленный С-концевой остаток треонина (треонинол);
- высокое содержание гидрофобных ароматических аминокислот. Существенным с точки зрения химического синтеза является также наличие неустойчивого к действию окислителей и сильных кислот остатка триптофана. Синтез октреотида может быть осуществлен как твердофазньм методом, так и классическими методами пептидного синтеза в растворе. Патент США 4395403 описывает способ синтеза октреотида в растворе. По этому способу из защищенных дипептидных сегментов синтезируется защищенный октреотид, содержащий остаток
-трет-бутоксикарбонил-лизина и остатки цистеина, блокированные п-метоксибензильными группами, который затем подвергается полному деблокированию действием трифторацетата бора и тиоанизола в трифторуксусной кислоте и окислению кислородом воздуха в разбавленном водном растворе. Подобный способ деблокирования требует применения больших объемов органических растворителей (>1 л/г) для выделения деблокированного пептида; кроме того, существует риск частичной деструкции остатка триптофана при действии сильных кислот на стадии финального деблокирования. Основные проблемы синтеза октреотида твердофазным методом связаны с наличием в его молекуле С-концевого остатка треонинола. Треонинол не содержит карбоксильной группы, что не дает возможности использовать традиционные методы присоединения первой (С-концевой) аминокислоты к полимерной матрице. В работе W. B. Edwards, et al. (J. Med. Chem. 1994, 37, 3749) синтез осуществляли, начиная с предпоследнего остатка Cys(Acm), присоединенного к полимеру сложноэфирной связью. После сборки пептид окисляли до дисульфида на полимере, затем получали защищенный [D-Trp(Boc)4, Lys(Boc)5, Тhr(Вut)6]-октреотид путем аминолиза пептидил-полимера избытком треонинола. Аминолиз протекал очень медленно, и общий выход защищенного пептида составил 14%. Более эффективньм оказался способ Y. Arano, et al. (Bioconjugate Chem. 1997, 8, 442), которые синтезировали октреотид, начиная с остатка Fmoc-Thr(But)-ol, присоединенного к 2-хлор-тритильному полимеру. Однако синтез необходимого для этой цели защищенного производного треонинола представляет отдельную непростую задачу. В патенте США 5889146 описан синтез октреотида, в котором С-концевой остаток треонинола присоединяли к полимеру путем образования циклического ацеталя с полимер-связанным терефталевым альдегидом. Такой циклический ацеталь обеспечивает одновременную защиту обеих гидроксильных групп треонинола и легко расщепляется кислотными реагентами в условиях удаления защитных групп трет-бутильного типа. Следует отметить, что известные твердофазные способы получения октреотида разработаны в основном с целью последующего синтеза конъюгатов с хелатами, биотином и другими маркерньми молекулами, реализованы в микромасштабе (0,1-0,25 ммоль) и практически не пригодны для синтеза октреотида в граммовых и более количествах, так как предполагают использование малодоступных и дорогостоящих исходных материалов - защищенных аминокислот, специальных полимеров и конденсирующих реагентов для твердофазного синтеза. Таким образом, существует необходимость в эффективных и масштабируемых способах получения октреотида. Целью предлагаемого изобретения является изыскание новых защищенных пептидов, которые можно было бы использовать в качестве исходных соединений для эффективного и масштабируемого синтеза октреотида. Поставленная цель достигается тем, что предлагаются новые соединения, а именно защищенные пептиды общей формулы:
где (D)A представляет собой остаток D-(Nindole-формил)триптофана;
R1 есть атом водорода, или трет-бутоксикарбонильная группа, либо группа вида -СО-ОХ1, где X1 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил;
R2=-СО-ОХ2, где Х2 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил;
R3 и R4 одновременно принимают значения -CH2-NH-CO-Y, где Y есть метил, алкил C1-C5, фенил, замещенный фенил, либо вместе составляют дисульфидную связь;
R5 представляет собой атом водорода, либо группу вида -СО-ОХ3, где X3 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил. Предметом предлагаемого изобретения таким образом являются производные октреотида II и III, содержащие Nindole-формилированный остаток D-триптофана, защищенную
-аминогруппу в остатке лизина, S-защищенные (II) или окисленные до циклического дисульфида (III) остатки цистеинаH-D-Phe-Cys(R3)-Phe-D-Trp(For)-Lys(R2)-Thr-Cys(R4)-Thr-ol (II)

где R2, R3, R4 принимают указанные выше значения. Предметом изобретения являются также производные IV-IX, которые могут содержать дополнительно защитные группы R1 на
-аминогруппе N-концевого остатка D-фенилаланина и/или R5 на гидроксильных группах С-концевого остатка треонинола:R1-D-Phe-Cys(R3)-Phe-D-Trp(For)-Lys(R2)-Thr-Cys(R4)-Thr-ol; (IV)

H-D-Phe-Cys(R3)-Phe-D-Trp(For)-Lys(R2)-Thr-Cys(R4)-Thr-ol(R5)2; (VI)

R1-D-Phe-Cys(R3)-Phe-D-Trp(For)-Lys(R2)-Thr-Cys(R4)-Thr-ol(R5)2; (VIII)

где R1
Н, а группы R2-R5 принимают указанные выше значения. Защитные группы R1 (для случая, если R1=-CO-OX1), R2, R5 представляют собой удаляемые основаниями группировки 2-алкил- или 2-арилсульфонилэтильного типа: карбаматные (уретановые) для N-концевой
-аминогруппы и остатка Lys (R1= -CO-OX1, R2=-CO-OX2) и карбонатные для гидроксильных групп остатка треонинола (R5= -СО-ОХ3). Очевидно, что 2-алкил(арил)сульфонилэтильные заместители 1-Х3 могут использоваться в различных сочетаниях, быть одинаковыми или разными, однако на практике предпочтительно использовать однородные защитные группы (X1= X2= Х3), например, из числа описанных в литературе (Таблица 1). Защитные группы R3 и R4 для остатков цистеина выбираются из числа ациламидометильных (S,N-ацетальных) групп, способных к отщеплению при действии окислительных реагентов, например иода, сульфенилгалогенидов, трифторацетата таллия (III), с одновременным образованием дисульфида. Такие защитные группы, например ацетамидометильная (Асm), бензамидометильная (Bzm), трет-бутилацетамидометильная (Tacm), a также способы их введения и удаления описаны в литературе. Группы R3 и R4 могут быть разными, однако предпочтительно использовать одинаковые защитные группы (R3=R4). Защищенные пептиды II-IX являются новыми, не описанными ранее веществами. Для синтеза пептидов II-IX могут быть использованы приемы и методы пептидного синтеза, описанные в литературе. Пептид IV можно синтезировать, например, методом ступенчатого наращивания пептидной цепи от С-конца к N-концу с использованием N
-защищенных аминокислот; стартовым С-концевым остатком в данном случае может быть треонинол с незащищенными гидроксильньми группами. В качестве временной N
-защиты можно применять группу, удаляемую мягким ацидолизом, например трет-бутоксикарбонильную, трет-амилоксикарбонильную, 4-метоксибензилоксикарбонильную или иные известные защитные группы. Для активации карбоксильных групп аминокислотных остатков, вводимых в пептидную цепь можно использовать разнообразные методы, описанные в литературе, например, метод активированных эфиров, метод смешанных ангидридов, карбодиимидный метод. Для защиты
-аминогруппы N-концевого остатка D-Phe применяется группа R1
Н. Альтернативно аминокислотная последовательность октапептида может быть разбита на сегменты различной длины, каждый из которых синтезируется отдельно, после чего из этих сегментов собирается полная пептидная цепь. Деблокирование и окисление остатков цистеина в пептиде IV, например, действием иода или иных реагентов, упомянутых выше, приводит к пептиду V. Если в пептидах IV и V группа R1 представляет собой уретановую группу, удаляемую ацидолизом, например трет-бутоксикарбонильную, то ее удаление действием кислоты дает пептиды II и III соответственно. Альтернативно пептид III может быть получен путем деблокирования и окисления остатков цистеина в пептиде II, как указано выше. При использовании в качестве стартового С-концевого остатка треонинола, содержащего гидроксильные группы, блокированные карбонатными защитными группами R5, с помощью способов, аналогичных описанным выше для пептидов II-V, могут быть получены пептиды VI, VII, VIII, IX. Защищенные пептиды III, V, VII, IX (при R1=-СО-ОХ1) можно непосредственно использовать для получения октреотида. Для это цели в указанных пептидах необходимо удалить имеющиеся защитные группы R1, R2, R5, а также Nindoie-формильную группу с остатка D-триптофана. Для удаления защитных групп пептиды III, V, VII, IX подвергают кратковременному действию разбавленного раствора основания, например обработке 0,1 н. водным раствором гидроксида натрия в течение 3-20 мин при температуре от 0 до 20oС, смесь нейтрализуют, например, добавлением избытка уксусной кислоты, после чего выделяют из полученного раствора октреотид известными способами, например, ионообменной или/и обращеннофазовой хроматографией. Сущность предлагаемого изобретения иллюстрируется примерами. При описании примеров используются следующие сокращения и условные обозначения:ДМФА - диметилформамид
ДЦГК - дициклогексилкарбодиимид
ОБТ- 1-гидроксибензотриазол
ТФУ - трифторуксусная кислота
ВЭЖХ - высокоэффективная жидкостная хроматография
Аст - ацетамидометил
Bzm - бензамидометил
Вос - трет-бутоксикарбонил
Thr-ol - остаток L-треонинола [(2S,3R)-1,3-дигидрокси-2-аминобутана]
Сокращенные обозначения аминокислот и защитных групп используются в соответствии с рекомендациями Комиссии по биохимической номенклатуре при IUPAC-IUB, опубликованными в Eur. J. Biochem., 1984, v. 138, No. 1, pp. 9-37. Сокращенные обозначения 2-алкил(арил)сульфонилэтильных защитных групп приведены в таблице 1. Оптически активные аминокислоты и их производные, приведенные в описаниях примеров, по умолчанию имеют L-конфигурацию. Значения хроматографических подвижностей Rf приведены для пластинок для тонкослойной хроматографии Alufоlien Kieselgel 60 F254 (Merck, ФРГ) в системах хлороформ-метанол-уксусная кислота, 95:5:3 (А) или 90:10:3 (Б); этилацетат-пиридин-уксусная кислота-вода, 60:5:15:10 (В). Обнаружение пятен на пластинках проводили в УФ-свете и нингидриновым реактивом после прогревания. Массы молекулярных ионов (М+H)+ измерены на времяпролетном масс-спектрометре МСБХ-1 (НПО "Электрон", Украина) или на масс-спектрометре MALDI-TOF VISION 2000 (Thermo Bioanalysis, Англия). Анализ аминокислотного состава проводили на анализаторе Biotronik LC5001 после кислотного гидролиза образцов пептидного материала в запаянных ампулах (3 М метансульфокислота, 1% фенол, 24ч, 110oС). Пример 1. Boc-D-Phe-Cys(Bzm)-Phe-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol (пептид IVa). a. Boc-Cys(Bzm)-Thr-ol. К раствору 4,4 г трифторацетата треонинола и 10,5 г пентафторфенилового эфира Boc-Cys(Bzm) в 100 мл ДМФА добавляют 3,75 мл N, N-диизопропилэтиламина и перемешивают смесь 4 ч при комнатной температуре. Смесь упаривают в вакууме до масла, остаток растворяют в 200 мл этилацетата, промывают 2
80 мл полунасыщенного водного раствора NaCl и упаривают досуха. Остаток обрабатывают эфиром и получают 7,2 г целевого соединения; Rf 0,40 (Б); m/z=443,2, M+H+ (вычислено 442,6). б. Boc-Thr-Cys(Bzm)-Thr-ol. 7,0 г Boc-Cys(Bzm)-Thr-ol растворяют в 50 мл охлажденной в ледяной бане ТФУК, через 20 мин при 0oС упаривают до масла, переупаривают с 2
50 мл толуола. Полученный трифторацетат H-Cys(Bzm)-Thr-ol растворяют в 100 мл ДМФА, добавляют 4 мл N,N-диизопропилэтиламина, затем при перемешивании 6,6 г пентафторфенилового эфира Вос-треонина. Смесь перемешивают 2 ч при комнатной температуре и упаривают в вакууме до масла. Остаток растворяют в 200 мл этилацетата, промывают 2
80 мл полунасыщенного водного раствора NaCl и упаривают досуха. После обработки эфиром получают 7,9 г целевого соединения; Rf 0,35 (Б); m/z=542,6, М+Н+ (вычислено 543,7). в. Boc-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol. С 7,5 г Boc-Thr-Cys(Bzm)-Thr-ol удаляют Вос-защиту, как описано в примере 1б, полученный трифторацетат растворяют в 100 мл ДМФА, добавляют 4 мл N,N-диизопропилэтиламина и 0,9 г ОБТ, затем при перемешивании 9,6 г 2,4,5-трихлорфенилового эфира Boc-Lys(Psc). Смесь перемешивают 5 ч при комнатной температуре и упаривают в вакууме до масла. Остаток обрабатывают эфиром, осадок отфильтровывают, промывают эфиром и получают 10,6 г целевого соединения; Rf 0,45 (Б); m/z=883,6, М+Н+ (вычислено 884,1). г. Boc-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol. С 10,5 г Boc-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol удаляют Вос-защиту, как описано в примере 1б, полученный трифторацетат растворяют в 100 мл ДМФА, добавляют 4 мл N,N-диизопропилэтиламина и 1,0 г ОБТ, затем при перемешивании 6,5 г 2,4,5-трихлорфенилового эфира Boc-D-Trp(For). Смесь перемешивают 10 ч при комнатной температуре и упаривают в вакууме до масла. К остатку добавляют этилацетат, выпавший осадок отфильтровывают, промывают эфиром и получают 11,9 г целевого пентапептида; Rf 0,45-50 (Б); m/z=1082,6, М+H+ (вычислено 1083,3). д. Boc-D-Phe-Cys(Bzm)-Phe-OH. К раствору 3,3 г фенилаланина и 3,5 мл триэтиламина в 20 мл воды и 50 мл ДМФА при интенсивном перемешивании добавляют порциями раствор 7,9 г пентафторфенилового эфира Boc-Cys(Bzm) в 30 мл ДМФА и перемешивают смесь 4 ч при комнатной температуре. Смесь упаривают в вакууме до масла, к остатку добавляют 200 мл этилацетата и 100 мл 1 М водного KHSO4. Органический слой промывают 2
80 мл насыщенного водного раствора NaCl и упаривают досуха. Остаток обрабатывают петролейным эфиром и получают Boc-Cys(Bzm)-Phe-OH, Rf 0,35 (А). Полученный дипептид растворяют в 50 мл ТФУК, через 10 мин раствор упаривают в вакууме и остаток обрабатывают эфиром. Осадок отделяют, растворяют в 30 мл воды и 50 мл ДМФА, добавляют при перемешивании 2,5 мл триэтиламина и 4,9 г п-нитрофенилового эфира Boc-D-Phe. Смесь перемешивают 18 ч при комнатной температуре, затем упаривают в вакууме до масла, к остатку добавляют 200 мл этилацетата и 100 мл 1 М водного KHSO4. Органический слой промывают водой, насыщенным водным раствором NaCl и упаривают досуха. Остаток обрабатывают эфиром, выпавший осадок промывают эфиром и получают 7,0 г Boc-D-Phe-Cys(Bzm)-Phe-OH; Rf 0,55 (Б); m/z=648,9, М+Н+ (вычислено 649,8). е. Boc-D-Phe-Cys(Bzm)-Phe-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol (пептид IIа). 2,17 г пентапептида Boc-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol (пример 1г) растворяют в 15 мл холодной ТФУК, через 20 мин раствор упаривают в вакууме и остаток обрабатывают эфиром. Осадок отделяют, растворяют в 20 мл ДМФА, добавляют 0,4 мл N,N-диизопропилэтиламина, 0,4 г ОБТ, 1,47 г Boc-D-Phe-Cys(Bzm)-Phe-OH (пример 1д), затем при охлаждении и перемешивании 0,51 г ДЦГК. Смесь перемешивают 3 ч при 0oС и 18 ч при комнатной температуре, фильтруют, фильтрат упаривают в вакууме до масла. Остаток обрабатывают 100 мл этилацетата, выпавший осадок промывают этилацетатом, эфиром и получают 3,0 г пептида IVa; Rf 0,25-30 (Б), 0,65 (В); m/z=1615,1, М+Н+ (вычислено 1614,0). Пример 2. Boc-D-Phe-Cys(Acm)-Phe-D-Trp(For)-Lys(Nsc)-Thr-Cys(Acm)-Thr-ol (пептид IVб). Пептид IVб получают аналогично описанному в Примере 1; Rf 0,15-20 (Б), 0,55 (В); m/z=1535,4, М+Н+ (вычислено 1534,9). Пример 3. Nsc-D-Phe-Cys(Bzm)-Phe-D-Trp(For)-Lys(Msc)-Thr-Cys(Bzm)-Thr-ol (пептид IVв). Пептид IVв получают аналогично описанному в Примере 1; Rf 0,10-20 (Б), 0,60 (В); m/z=1561,4, М+Н+ (вычислено 1561,8). Пример 4. 
К раствору 1,62 г пептида IVa (Пример 1) в 700 мл уксусной кислоты и 200 мл воды при перемешивании приливают раствор 1,5 г иода в 80 мл уксусной кислоты и 20 мл воды и оставляют смесь на 2 ч при комнатной температуре. К смеси добавляют 2 г цинка порошка и перемешивают до обесцвечивания. Цинковый шлам отфильтровывают, фильтрат упаривают при пониженном давлении до объема 15-20 мл, к остатку добавляют 100 мл воды. Выпавший осадок отделяют, промывают водой и сушат на воздухе. Выход пептида Va 1,20 г; Rf 0,40 (В); m/z= 1345,4, М+H+ (вычислено 1345,7). Пример 5. H-D-Phe-Cys(Bzm)-Phe-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol (пептид IIа). 0,81 г пептида IVa (Пример 1) растворяют в 10 мл охлажденной до 0oС ТФУК, через 20 мин раствор упаривают и остаток обрабатывают эфиром. Получают 0,80 г трифторацетата пептида IIа. Rf 0,35 (В); m/z=1513,4, М+H+ (вычислено 1513,9). Пример 6.

Трифторацетат пептида IIIa получают из пептида Va аналогично описанному в Примере 5; Rf 0,25 (В); m/z=1245,6, М+Н+ (вычислено 1245,3). Пример 7.

К раствору 1,54 г пептида IVб (Пример 2) в 600 мл уксусной кислоты и 300 мл воды при перемешивании приливают раствор 1,5 г иода в 80 мл уксусной кислоты и 20 мл воды и оставляют смесь на 10 ч при комнатной температуре. К смеси добавляют раствор 2,5 г аскорбиновой кислоты в 50 мл воды и перемешивают до обесцвечивания, затем упаривают при пониженном давлении до объема 25-30 мл, к остатку добавляют 150 мл воды. Выпавший осадок отделяют, промывают водой и сушат на воздухе. Выход пептида Va 1,15 г; Rf 0,35 (В); m/z= 1391,4, M+H+ (вычислено 1390,7). Пример 8.

Трифторацетат пептида IIIб получают из пептида Vб аналогично описанному в Примере 5; Rf 0,20 (В); m/z=1290,3, M+N+ (вычислено 1290,6). Пример 9.

Пептид Vв получают из пептида IVв как описано в примере 7. f 0,30 (В); m/z=1292,9, М+Н+ (вычислено 1293,5). Пример 10. Boc-D-Phe-Cys(Bzm)-Phe-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol(Psc)2 (пептид VIIIa). a. Boc-Thr-ol(Psc)2. К раствору 2,1 г Вос-треонинола в 20 мл дихлорметана и 3 мл пиридина при охлаждении в ледяной бане и перемешивании добавляют 5,9 г 2-фенилсульфонилэтилового эфира хлоругольной кислоты (Psc-Cl), смесь перемешивают 2 ч при 0oС и 15 ч при комнатной температуре. К смеси добавляют 120 мл этилацетата и 100 мл 2 М KHSO4, органический слой отделяют, промывают 2
100 мл 2 М KHSO4, 50 мл насыщенного водного раствора NaCl и упаривают досуха. Остаток хроматографируют на колонке с Kieselgel 60 (Merck, Германия), используя в качестве элюента этилацетат, и получают 4,4 г целевого дикарбоната в виде масла; Rf 0,70 (А). б. Boc-Cys(Bzm)-Thr-ol(Psc)2. С 4,4 г Boc-Thr-ol(Psc)2 удаляют Вос-защиту, как описано в примере 1б, и полученный трифторацетат растворяют в 20 мл ДМФА. К раствору добавляют 2,65 г Boc-Cys(Bzm)-OH, 1,75 мл N,N-диизопропилэтиламина, 0,95 г ОБТ, затем при охлаждении до 0oС 1,65 г ДЦГК. Смесь перемешивают смесь 1 ч при 0oС и 6 ч при комнатной температуре, затем фильтруют и фильтрат упаривают в вакууме до масла. Остаток растворяют в 100 мл этилацетата, промывают водой, насыщенным водным раствором NаНСО3, 2 М раствором KHSO4, насыщенным водным раствором NaCl и упаривают досуха. Остаток обрабатывают петролейным эфиром и получают 5,6 г целевого соединения; Rf 0,65 (A); m/z=865,7, М+Н+ (вычислено 865,0). в. Boc-Thr-Cys(Bzm)-Thr-ol(Psc)2. С 5,6 г Boc-Cys(Bzm)-Thr-ol(Psc)2 удаляют Вос-защиту, как описано в примере 1б, и полученный трифторацетат растворяют в 25 мл ДМФА. К раствору добавляют 1,55 г Boc-Thr-OH, 1,5 мл N, N-диизопропилэтиламина, 0,80 г ОБТ, затем при охлаждении до 0oС, 1,55 г ДЦГК. Смесь перемешивают 1 ч при 0oС и 5 ч при комнатной температуре, затем фильтруют и фильтрат упаривают в вакууме до масла. Остаток растворяют в 100 мл этилацетата, промывают водой, насыщенным водным раствором NaHCO3, 2 М раствором KHSO4, насыщенным водным раствором NaCl и упаривают досуха. Остаток обрабатывают эфиром и получают 5,3 г целевого трипептида; Rf 0,45 (А); после удаления Вос-группы m/z=866,4, М+Н+ (вычислено 865,9). г. Boc-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol(Psc)2. С 5,3 г Boc-Thr-Cys(Bzm)-Thr-ol(Psc)2 удаляют Вос-защиту, как описано в примере 1б, обрабатывают эфиром, полученный осадок трифторацетата растворяют в 25 мл ДМФА, добавляют 1,3 мл N,N-диизопропилэтиламина и 0,75 г ОБТ, затем при перемешивании 3,9 г 2,4,5-трихлорфенилового эфира Boc-Lys(Psc).Смесь перемешивают 5 ч при комнатной температуре и упаривают в вакууме до масла. Остаток обрабатывают эфиром, осадок отфильтровывают, промывают эфиром и получают 6,53 г тетрапептида; Rf 0,35-0,40 (А), 0,60 (Б); после удаления Вос-группы m/z=1206,6, M+H+ (вычислено 1206,4). д. Boc-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol(Psc)2. С 6,50 г Boc-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol(Psc)2 удаляют Вос-защиту, как описано в примере 1б, обрабатывают эфиром, полученный осадок трифторацетата растворяют в 30 мл ДМФА, добавляют 1,3 мл N, N-диизопропилэтиламина и 0,70 г ОБТ, затем при перемешивании 2,7 г 2,4,5-трихлорфенилового эфира Boc-D-Trp(For). Смесь перемешивают 12 ч при комнатной температуре и упаривают в вакууме до масла. К остатку добавляют эфир, выпавший осадок отфильтровывают, промывают эфиром и получают 7,6 г целевого пентапептида; Rf 0,45-55 (Б); после удаления Вос-группы m/z=1407,6, М+Н+ (вычислено 1407,8). е. Boc-D-Phe-Cys(Bzm)-Phe-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol(Psc)2 (пептид VIIIa). 3,1 г пентапептида Boc-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol(Psc)2 растворяют в 15 мл холодной ТФУК, через 20 мин раствор упаривают в вакууме и остаток обрабатывают эфиром. Осадок отделяют, растворяют в 20 мл ДМФА, добавляют 0,4 мл N,N-диизопропилэтиламина, 0,4 г ОБТ, 1,47 г Boc-D-Phe-Cys(Bzm)-Phe-OH (пример 1д), затем при охлаждении и перемешивании 0,51 г ДЦГК. Смесь перемешивают 3 ч при 0oС и 24 ч при комнатной температуре, фильтруют, фильтрат упаривают в вакууме до масла. Остаток обрабатывают 100 мл этилацетата, выпавший осадок промывают этилацетатом, эфиром и получают 3,9 г пептида VIIIa; Rf 0,35-45 (Б), 0,75 (В); после удаления Вос-группы m/z=1940,0, М+H+ (вычислено 1938,5). Пример 11. Psc-D-Phe-Cys(Bzm)-Phe-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol(Psc)2 (пептид VIIIб). Пептид VIIIб получают аналогично описанному в Примере 10; Rf 0,35-40 (Б), 0,75 (В); m/z=2167,9, M+H+ (вычислено 2168,7). Пример 12. 
Пептид IXa получают из пептида VIIIa как описано в примере 4. Rf 0,55 (В); m/z =1768,6, М+H+ (вычислено 1768,1). Пример 13.

Пептид IХб получают из пептида VIIIб как описано в примере 4. Rf 0,55 (В); m/z=1900,0, М+Н+ (вычислено 1898,2). Пример 14. H-D-Phe-Cys(Bzm)-Phe-D-Trp(For)-Lys(Psc)-Thr-Cys(Bzm)-Thr-ol(Psc)2 (пептид VIa). Трифторацетат пептида VIa получают из пептида VIIIa аналогично описанному в Примере 5; Rf 0,35 (В); m/z=1940,3, М+Н+ (вычислено 1938,5). Пример 15

Трифторацетат пептида VIIa получают из пептида IХа аналогично описанному в Примере 5; Rf 0,25 (В); m/z=1668,3, M+H+ (вычислено 1668,0). Пример 16. Получение октреотида (I). 145 мг (100 мкмоль) трифторацетата пептида IIIб растворяют в 10 мл смеси ДМФА-вода (1: 2). К раствору при сильном перемешивании в течение 30 с добавляют по каплям 1,5 мл 1 н. водного раствора гидроксида натрия и перемешивают еще 5 мин, затем добавляют 0,5 мл уксусной кислоты. Смесь разбавляют водой до 50 мл и наносят на колонку 25
100 мм с целлюлозой СМ-52 (Whatman, Англия), уравновешенную 0,03 М ацетатом аммония (рН 5,9). Проводят элюцию градиентом от 0,05 до 0,5 М ацетата аммония (рН 5,9), фракции, содержащие целевой продукт, объединяют и лиофилизуют. Получают 59 мг октреотида ацетата; хроматографическая чистота по ВЭЖХ 94%, массовое содержание пептидного материала (на октреотид диацетат) 82% (выход 42 мкмоль). Масс-спектр: (М+Н)+ 1019,8 (вычислено: 1020,31); аминокислотный состав: Thr 0,94 (1); Phe 2,04 (2); Trp 0,92 (1); Lys 1,00 (1); Cys - не определяется. Аналогично получают октреотид деблокированием других описанных выше защищенных пептидов (таблица 2).
Формула изобретения

где (D)A представляет собой остаток D-(Nindole-формил)триптофана;
R1 - атом водорода или трет-бутоксикарбонильная группа либо группа вида -СО-ОХ1, где X1 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил;
R2 = -СО-ОХ2, где X2 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил;
R3 и R4 одновременно принимают значения -CH2-NH-CO-Y, где Y - метил, алкил C1-C5, фенил, замещенный фенил, либо вместе составляют дисульфидную связь;
R5 представляет собой атом водорода, либо группу вида -СО-ОХ3, где X3 может принимать значения: 2-алкилсульфонилэтил, 2-фенилсульфонилэтил, 2-(4-замещенный арил)сульфонилэтил.
РИСУНКИ
Рисунок 1, Рисунок 2



















