Способ генерации мощного импульса рентгеновского излучения
Использование: в импульсной рентгенотехнике, инерциальном термоядерном синтезе, сильноточной электронике и физике высоких плотностей энергии. Способ заключается в накоплении энергии в накопителе путем подключения его к первичному источнику энергии, формировании электромагнитного импульса при подключении к накопителю формирующих линий и последующем преобразовании энергии электромагнитного импульса в рентгеновское излучение. На первом этапе в цепи преобразования энергии в мощное рентгеновское излучение используется химическая энергия взрывчатых веществ в сочетании с накоплением генерируемой магнитной энергии в индуктивном накопителе и формированием высоковольтного сильноточного электромагнитного импульса путем прерывания тока в контуре накопителя. Размыкание контура производится либо с использованием взрывчатых веществ, либо электровзрывом проводников, либо в специально организованном плазменном слое, либо каскадным образом, сочетающим эти виды прерывания тока. Технический результат заключается в снятии ограничения на плотность энергии на стадии накопления и возможности генерирования мощных импульсов при снижении габаритов и упрощении конструкции устройства. 2 з.п.ф-лы.
Изобретение относится к областям импульсной рентгенотехники, инерциального термоядерного синтеза (ИТС), сильноточной электроники и физики высоких плотностей энергии и может быть использовано для генерации мощных импульсов рентгеновского излучения (МРИ).
Проблема генерации МРИ, а также основная проблема в каждой из указанных областей сводится к получению импульсов с большими уровнями общей энергии, мощности и потока энергии, а именно с уровнями энергии в электромагнитном импульсе (ЭМИ) до десятков МДж, мощности в сотни ТВт, энергии в МРИ до нескольких МДж. Известно, что продвижение в области управляемого термоядерного синтеза (УТС) происходит через последовательное наращивание энергоемкости первичных накопителей, выходной мощности формирующих устройств и повышение концентрации энергии на мишени установок, предназначенных как для изучения процессов на достигнутом уровне мощности, так и для отработки отдельных систем. Реализация этих задач возможна различными способами. В проблеме инерциального термоядерного синтеза характеристики рентгеновского излучения несут ценную информацию о процессах в реакторной камере. Поэтому помимо собственной ценности генераторов МРИ они входят в общее семейство установок ИТС. Известен способ генерации МРИ, заключающийся в накоплении энергии в емкостных накопителях, преобразовании ее в магнитную энергию тока, протекающего по пинчующемуся плазменному слою, генерировании ЭМИ при самопроизвольном прерывании тока, обусловленном внезапным появлением сильной турбулентности и аномального сопротивления в системах плазменного фокуса (Г.Л. Сахлин. В кн. "Накопление и коммутация энергии больших плотностей". Изд-во "Мир". М. 1979, стр.199-214). Недостатком способа является невысокий общий к. п. д, ограниченный эффектами плазменных неустойчивостей, результатом чего является низкий уровень энергии в импульсе рентгеновского излучения (РИ) и вследствие этого необходимость увеличения энергоемкости первичного источника питания. Последнее возможно либо увеличением числа конденсаторов, либо увеличением напряжения на накопителе. Первое приводит к увеличению паразитной индуктивности и дальнейшему снижению эффективности метода. Второй путь ограничен электропрочностью диэлектрических элементов конструкции. Таким образом, увеличение энергии рентгеновского импульса неизбежно связано со снижением надежности, увеличением громоздкости и стоимости установок для получения МРИ. Известен способ генерации импульса МРИ, выбранный за прототип (J.J. Ramirez. The Jupiter program. Proceedings of the 10th IEEE International Pulsed Power Conference, Albukerkque, NM, 1995, p.91-98), заключающийся в накоплении энергии в накопителе путем подключения его к первичному источнику энергии, формировании электромагнитного импульса при подключении к накопителю формирующих линий и последующем преобразовании энергии ЭМИ в рентгеновское излучение коллапсирующим лайнером. На первой стадии осуществляют накопление электростатической энергии в первичном источнике - емкостных накопителях (генераторах Маркса), входящих в состав импульсных генераторов мощности. На второй стадии после включения (коммутации) генераторов Маркса путем подключения к ним формирующих линий генерируются индивидуальные высоковольтные импульсы большим числом модулей - импульсных генераторов мощности, включающих в себя генераторы Маркса и формирующую линию. Токи этих модулей складываются на третьей стадии и подводятся с помощью передающих линий к цилиндрической плазменной нагрузке (лайнеру), помещенной в центре вакуумной камеры. Во время четвертой стадии магнитное поле, генерируемые током, вызывает взрыв лайнера, приводящий к генерированию плазмы, которая продолжает поглощать подводимую энергию, конвертируемую в кинетическую энергию частиц. На конечном этапе кинетическая энергия преобразуется в энергию рентгеновского излучения, когда плазма останавливается вблизи оси взрыва. Магнитная энергия, накопленная вблизи области нагрузки, продолжает ускорять коллапсирующую плазму, создавая дополнительное излучение. Мощный радиационный импульс может быть получен в коротких (~100...200 нc) токовых импульсах. Недостаток этого способа: плотность энергии в емкостном накопителе ограничивается электропрочностью изоляционных материалов. Известно, что плотность энергии, запасаемой в генераторах Маркса, не превышает 5 кДж/м3 при выходном напряжении 2-2,5 MB (Котов Ю.А., Лучинский А.В. Усиление мощности емкостного накопителя энергии прерывателем тока на взрывающихся проволочках. В кн. "Физика и техника мощных импульсных систем. М.: Энергоатомиздат, 1987, с. 189-211). Низкая плотность энергии приводит к значительной индуктивности разрядной цепи, что ограничивает возможную выходную мощность генераторов Маркса и среднюю скорость ее нарастания. Учет последнего фактора приводит к необходимости многокаскадной компрессии ЭМИ в последовательно работающих импульсных генераторах мощности. Способ прототипа предопределяет большие габаритные размеры генераторов мощных рентгеновских импульсов. Необходимость создания крупногабаритных сооружений для емкостных накопителей и их многоэлементность приводят к тому, что при увеличении выходной энергии в МРИ способ становится все более громоздким и менее надежным, а также к значительному увеличению стоимости его реализации из-за дороговизны энергоемких емкостных накопителей и их обслуживания. Задача состоит в создании более надежного и относительно простого способа генерации мощного импульса РИ, позволяющего осуществить более простую и дешевую реализацию этапов накопления энергии и формирования ЭМИ, снять ограничения, связанные с повышенными требованиями к множеству элементов емкостного накопителя, характерному для прототипа, что в конечном счете приведет к повышению надежности способа генерации МРИ. Технический результат, реализуемый с помощью заявляемого способа, состоит в снятии ограничения на плотность энергии на стадии накопления. Он достигается тем, что в способе генерации мощного импульса рентгеновского излучения, заключающемся в накоплении энергии в накопителе энергии путем подключения его к первичному источнику энергии, формировании электромагнитного импульса, преобразовании энергии электромагнитного импульса в импульс рентгеновского излучения, согласно изобретению при использовании в качестве первичного источника энергии взрывомагнитного генератора накопление энергии осуществляют в индуктивном накопителе энергии, формируют обостренный электромагнитный импульс размыканием токового контура индуктивного накопителя энергии, по крайней мере, а два этапа при последовательном прерывании электрического тока в предварительно организованном плазменном слое токового контура индуктивного накопителя энергии с нелинейной зависимостью его проводимости от протекающего через его токовый контур электрического тока. Для увеличения средней мощности, выделяемой в нагрузке, размыкание электрического тока в плазменном слое токового контура индуктивного накопителя энергии осуществляют за время, меньшее времени пробега электромагнитной волны по нему. Преобразование энергии электромагнитного импульса в рентгеновское излучение можно осуществлять посредством превращения энергии электромагнитного импульса в кинетическую энергию потока заряженных частиц. Техническое решение обеспечивается тем, что плотность энергии, запасаемой в магнитном поле неразрушаемых соленоидов достигает 40-100 МДж/м3 (Е.А. Абрамян, Б.А. Альтеркоп, Г.Д. Кулешов. "Интенсивные электронные пучки. Физика, техника, применение. М.: Энергоатомиздат, 1984, с.173). Это дает возможность создания индуктивных накопителей энергии с объемом, в тысячи раз меньшим, чем у емкостных накопителей, и соответственно существенного уменьшения стоимости всего способа, особенно реализуемого в устройствах с мощностью в десятки тераватт и более. Индуктивные накопители могут быть коаксиального, радиального или иного типа. Однако индуктивный накопитель не является первичным источником энергии и сам должен запитываться от сильноточного генератора. В качестве такового обычно используются конденсаторные батареи или генераторы Маркса. Это, однако, сохраняет недостатки, присущие способу прототипа. В изобретении эти недостатки устраняются заменой накопления электростатической энергии на первом этапе генерированием мощного потока магнитной энергии путем преобразования химической энергии ВВ в электромагнитную. Это преобразование происходит при совершении работы проводниками, движущимися во взрывомагнитном генераторе (ВМГ) под действием продуктов взрыва заряда взрывчатого вещества против давления магнитного поля. Эта работа выражается в увеличении электромагнитной энергии в контуре ВМГ. Благодаря большому энергосодержанию и высокой мощности ВВ этап накопления от первичного источника, основанный на преобразовании химической энергии в электромагнитную, является высокоэффективным и компактным. Удельная энергоемкость источников электромагнитной энергии, с помощью которых осуществляют накопление энергии, примерно на три порядка выше удельной энергоемкости емкостных накопителей. Для создания в первичном контуре ВМГ начального магнитного поля необходима небольшая конденсаторная батарея, подключаемая к ВМГ. Генерируемая таким образом энергия передается в энергоемкие индуктивные накопители путем подключения их к ВМГ. Высоковольтный ЭМИ формируется путем размыкания контура, образуемого токовым генератором, индуктивным накопителем и прерывателем тока (ПТ). При реализации этого этапа способа в прерывателе тока вследствие специального подбора вещества, проводящего ток, и выбора конструкции прерывателя электрическое сопротивление меняется от малой величины на стадии накопления энергии и резко растет при достижении критического уровня тока. Использованием первичного источника, основанного на взрывомагнитном принципе, - взрывомагнитного генератора (ВМГ) - и осуществлением накопления в накопителе с большими удельными энергоемкостями в результате отказа от способа накопления электростатической энергии в сочетании с формированием ЭМИ при размыкании контура накопителя достигается увеличение надежности способа и его упрощение. Одним из возможных конкретных способов разрыва тока, способствующих достижению заявляемого технического результата, является разрушение проводника (фольги) на ребристой преграде взрывчатым веществом или диэлектрическими кумулятивными струями. Другим способом разрыва тока является электровзрыв проводников, когда энергия, запасаемая в накопителе, во много раз превосходит энергию, необходимую для плавления и испарения материала проводника. Для осуществления быстрого разрыва контура необходим специальный подбор длины, сечения, материала проводников и конструкции самого прерывателя. Все эти характеристики сильно зависят от используемого индуктивного накопителя, параметров токового импульса и плохо поддаются теоретическим расчетам. Таким образом, использование электровзрывных прерывателей предполагает проведение определенных операций по оптимизации их характеристик. Использование "простейших" типов ПТ - взрывных и электровзрывных - целесообразно, в частности, в тех вариантах формирования ЭМИ, когда энергия индуктивного накопителя передается в формирующую линию (ФЛ), являющуюся накопителем емкостного типа. Известно, что ограничения на допустимую плотность энергии емкостных накопителей существенно ослабляются при их быстрой (короче 1 мкс) зарядке. Высокая скорость зарядки ФЛ обеспечивается малой величиной индуктивности используемых индуктивных накопителей. Высоковольтный ЭМИ формируется затем путем коммутации ФЛ. В настоящее время широко используются наиболее "быстроходные" плазменные прерыватели тока (ППТ), с помощью которых могут быть достигнуты требуемые уровни выходной мощности при разрыве тока за время меньше или порядка 100 нc. Включение в схему генератора мощности ППТ требует выполнения ряда операций, связанных с генерированием плазмы в ПТ до включения токового генератора и организации плазменного токового канала в ПТ. Существует широкий набор генераторов плазмы, используемых для заполнения ПТ. Для реализации быстрого прерывания тока, что обеспечивает генерирование высоковольтного ЭМИ, подбирают электрофизические (связанные с характеристиками плазмы) и конструктивные параметры плазменного прерывателя тока. Условия эффективной генерации МРИ включают не только необходимость передачи в нагрузку большой энергии при высокой пиковой мощности, но и требования предотвращения предымпульса ЭМИ на мишени и формирование ЭМИ с коротким фронтом нарастания тока. Условие более быстрого прерывания тока в ППТ достигается путем специального подбора электрофизических и конструктивных параметров плазменного прерывателя тока или использованием, например, каскадного ППТ, когда применяют два или более прерывателей, соединенных последовательно с тем, чтобы каждый последующий каскад размыкал ток быстрее предыдущего вследствие более быстрого процесса накопления магнитной энергии, в результате чего не успевают развиваться процессы, стабилизирующие проводимость плазменного токового канала. Каскадный способ обострения основан (упрощенно) на следующем. Допустим, первоначально энергия накапливается в индуктивности L1 при протекании тока через прерыватель ПТ1. При срабатывании ПТ1 к первичному контуру подключается контур с индуктивностью L2 и прерывателем ПТ2. ЭДС, возникающая на L1, приложена ко второму контуру, т.е. E1=L1








Формула изобретения
1. Способ генерации мощного импульса рентгеновского излучения, заключающийся в накоплении энергии в накопителе энергии путем подключения его к первичному источнику энергии, формировании электромагнитного импульса, преобразовании энергии электромагнитного импульса в импульс рентгеновского излучения, отличающийся тем, что при использовании в качестве первичного источника энергии взрывомагнитного генератора, накопление энергии осуществляют в индуктивном накопителе энергии, формируют обостренный электромагнитный импульс размыканием токового контура индуктивного накопителя энергии, по крайней мере, в два этапа при последовательном прерывании электрического тока каскадом прерывателей, по крайней мере, на одном этапе в предварительно организованном плазменном слое токового контура индуктивного накопителя энергии с нелинейной зависимостью его проводимости от протекающего через его токовый контур электрического тока, а на другом этапе - с размыканием указанного токового контура с помощью взрывчатого вещества и/или посредством электровзрыва проводников. 2. Способ по п. 1, отличающийся тем, что размыкание электрического тока в плазменном слое токового контура индуктивного накопителя энергии осуществляют за время, меньшее времени пробега электромагнитной волны по нему. 3. Способ по п. 1, отличающийся тем, что преобразование энергии электромагнитного импульса в рентгеновское излучение осуществляют посредством превращения энергии электромагнитного импульса в кинетическую энергию потока заряженных частиц.NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение
Дата, с которой действие патента восстановлено: 27.08.2008
Извещение опубликовано: 27.08.2008 БИ: 24/2008