Молекулярный вектор для доставки генов в клетки-мишени
Изобретение относится к области биотехнологии, медицины, иммунологии и может быть использовано в фармацевтической промышленности и молекулярной фармакологии. Молекулярная конструкция представляет собой частицы, в центре которых находится рекомбинантная плазмидная ДНК с доставляемым геном, а на поверхности - антитела к клеткам-мишеням. Антитела входят в состав конъюгата - спермидин-полиглюкин, способного удерживать конъюгат на отрицательно заряженной ДНК за счет положительного заряда спермидина и стимулировать проникновение молекул ДНК в эукариотические клетки. Изобретение позволяет разрабатывать средства для доставки генов в клетки-мишени. 4 ил., 6 табл.
Изобретение относится к области биотехнологии, медицины, иммунологии; оно может быть использовано в фармацевтической промышленности и молекулярной фармакологии и представляет собой способ целенаправленной доставки генов в клетки-мишени.
Достижения в области генетики, молекулярной биологии и биотехнологии определяют разработку стратегии и тактики введения ДНК в клетки как для целей генной терапии, так и при создании ДНК-вакцин. ВОЗ в начале 90-х годов составила и утвердила рекомендации по проведению работ в этих направлениях. В постановлении восьмой сессии общего собрания Российской академии медицинских наук в плане развития приоритетных направлений фундаментальных медицинских исследований на первом месте стоит генодиагностика и генотерапия [1] . Большое внимание созданию и развитию ДНК-вакцин было отведено на международной конференции "Вакцины и иммунизация" 1998 г. [2]. Обсуждались как созданные препараты, так и механизмы их действия. Из числа основных проблем, связанных с безопасностью этих методов, две являются основными: возможное мутагенное действие ДНК, встроенной в геном клеток человека, и иммунопатология, которая может возникать при длительной выработке антигена в организме [3]. Эти проблемы решаются как созданием специальных рекомбинантных векторов, содержащих гены, так и разработкой способов доставки генов в клетки. На сегодняшний день одним из перспективных и исследуемых направлением является разработка способов целенаправленной доставки генов в клетки-мишени организма. Суть заключается в том, чтобы доставить ген именно в те клетки, в которых он и должен функционировать. Известны способы создания рекомбинантных векторов и введения их в организм [4] . Первоначально вводили "незащищенные" рекомбинантные ДНК, которые быстро инактивировались под действием нуклеаз крови и эффективность доставки ДНК в клетки была низкой [5-7]. В настоящее время разрабатываются способы защиты вводимых ДНК (липосомы и т.п.) и способы доставки ДНК к клеткам-мишеням и проникновения в них. Так в работе [8] (прототип) описывается использование комплекса белка с поликатионными нуклеиновыми кислотами. В качестве белка авторы использовали трансферритин и показали, что комплекс взаимодействует с рецепторами трансферритина, проникает в клетки посредством пиноцитоза и происходит экспрессия ДНК в клетках. Недостатком этого способа является отсутствие универсальности доставки ДНК (в другие клетки-мишени) и относительно низкая эффективность проникновения ДНК в клетки. Технической задачей изобретения является создание высокоэффективного молекулярного вектора как средства целенаправленной доставки генов в клетки-мишени. Для генной терапии и ДНК-вакцинации людей перспективным представляется создание такой конструкции вектора, который защищал бы рекомбинантную плазмиду с встроенным геном от действия нуклеаз крови, и, в то же время, имел бы стимулятор для проникновения ДНК в клетки. В качестве стимуляторов проникновения ДНК в эукариотические клетки применяются: ДЕАЕ-декстран, кальций-фосфат и некоторые другие [9]. Поставленная задача решается путем создания молекулярного вектора - конструкции, которая представляет собой вирусоподобные частицы, в центре которых находится рекомбинантная плазмидная ДНК с доставляемым геном, а на поверхности антитела - к клеткам-мишеням. Антитела входят в состав конъюгата: спермидин-полиглюкин, который несет две функции: удерживает конъюгат на отрицательно заряженной ДНК за счет положительного заряда спермидина и в то же время является аналогом ДЕАЕ-декстрана, стимулятора проникновения молекул ДНК в эукариотические клетки. Сущность изобретения заключается в следующем. Молекулярный вектор для доставки генов в клетки-мишени представляет собой частицы, в центре которых находится рекомбинантная плазмидная ДНК, содержащая доставляемые гены, а на поверхности - антитела к клеткам-мишеням. Для сборки молекулярного вектора создают рекомбинантную плазмидную ДНК, содержащую доставляемый ген, очищают ее известными способами [10]. Антитела к клеткам-мишеням получают, используя стандартные способы иммунизации антигенами (клетками-мишенями или их компонентами) с последующей очисткой антител из сыворотки крови [11]. Плазмидную ДНК с доставляемым геном покрывают слоем конъюгата (фиг.1): - полиглюкин с молекулярной массой около 60000 Д активируют периодатом натрия, который затем удаляют гель-фильтрацией на колонке с сефадексом G-50 в калий-фосфатном буфере; - к активированному полиглюкину добавляют спермидин и антитела в отношении на 10 молекул полиглюкина 100 молекул спермидина и 1 - антител; - после инкубации несвязавшиеся компоненты удаляют гель-фильтрацией на сефадексе G-50 в буфере: 0,1 М Tpис-НCl, pH 8,3; - полученный конъюгат в избытке добавляют к плазмидной ДНК и после инкубации освобождаются от избытка конъюгата гель-фильтрацией на колонке с сефарозой CL-6В в физиологическом растворе. Процесс получения молекулярного вектора для доставки генов в клетки-мишени представлен на фиг.2. Стабильность плазмиды в клетках и экспрессию гена определяют по известным методикам (картирование плазмидной ДНК рестриктазами, методами ИФА, ПЦР и др.). Новыми, по сравнению с известными конструкциями, признаками являются: использование для доставки генов молекулярного вектора, содержащего в центре рекомбинантную плазмидную ДНК с доставляемым геном, а на поверхности антитела - к клеткам-мишеням. Антитела удерживаются на поверхности за счет вхождения их в состав конъюгата: спермидин-полиглюкин, который несет две функции: удерживает конъюгат на отрицательно заряженной ДНК за счет положительного заряда спермидина и в то же время является аналогом ДЕАЕ-декстрана, стимулятора проникновения молекул ДНК в эукариотические клетки. Именно эта совокупность признаков обеспечивает целенаправленную доставку ионов в клетки-мишени и более высокую степень трансформации клеток рекомбинантной ДНК. Согласно предложенной схеме была создана конструкция молекулярного вектора, которая представляет собой вирусоподобные частицы, в центре которых находится рекомбинантная плазмидная ДНК с доставляемым геном, а на поверхности - антитела к клеткам-мишеням и проверена ее биологическая активность. Показано, что вводимый ген доставляется и накапливается в тех клетках организма, антитела к которым находятся на поверхности конструкции. Таким образом можно сделать вывод, что предлагаемое техническое решение позволяет целенаправленно доставлять гены к клеткам-мишеням, защищать их от действия нуклеаз крови и, кроме того, комплекс полиглюкин-спермидин, являясь аналогом ДЕАЕ-декстрана, используемого in vitro для стимуляции трансформации эукариотических клеток, аналогично способствует проникновению доставляемых генов в клетки. Перечень графических материалов: фиг.1. Молекулярный вектор для доставки генов в клетки-мишени: 1 - плазмидная ДНК, содержащая доставляемый ген, 2 - конъюгат: спермидин-полиглюкин - антитела к клеткам-мишеням. фиг.2. Гель-фильтрация на колонке с сефарозой CL-6B: 1 - плазмидная ДНК, 2 - то же, после инкубации с конъюгатом: спермндин-полиглюкин - антитела. фиг. 3. Рестрикциоиный анализ (Нinf I) плазмидных ДНК. Дорожки электрофореграммы агарозного геля: 1 - исходная плазмидная ДНК, 2 - плазмидная ДНК после пассирования в лимфоцитах, 3 - то же, в кератиноцитах. Н - ДНК плазмиды pBR322+Hinf I. фиг. 4. Анализ белков лимфоцитов, полученных на 10-ые сутки после иммунизации мышей молекулярным вектором. А - электрофореграмма в 15%-ном поликриламидном геле, Б - иммуноблотинг с использованием поликлональных анти-

Так как в эксперименте использовался ген, встроенный под контроль прокариотических промоторов, то его экспрессии мы особо не ожидали. Тем не менее, при постановке иммуноблота с антителами к ФНО-


- целенаправленно доставлять гены в клетки-мишени, сводя до минимума их попадание в другие виды клеток;
- использовать гены инфекционных агентов в составе рекомбинантных плазмидных ДНК ("центральное ядро" частиц) в качестве ДНК-вакцины;
- использовать положительно заряженный комплекс полиглюкин-спермидин (аналог ДЕАЕ-декстрана) в качестве стимулятора проникновения ДНК в клетки. Литература
1. Постановление восьмой (LXXI) сессии Общего собрания Российской академии медицинских наук "Новые технологии в медицине XXI века". //Вестник РАМН. - 1999. - 10. - С. 32-34. 2. Бектимиров Т.A., Баринский И.Ф. "Международная конференция "Вакцины и иммунизация" //Вопросы вирусологии. - 1999. - 2. - С. 95-96. 3. Воробьев А.А., Медуницин Н.В. Новые принципы и методы создания иммунобиологических препаратов. //Вестник РАМН. - 1999. - 10. - С. 16-17. 4. Ann. N.Y. Acad. Sci. V. 772: Vaccines. A New Era in Vaccinology./ Eds M.A. Lin, M.R., Hilleman, R. Kurth. New York, 1995. 5. Wolff J. A. , Malone R.W., Williams P. et al. //Science.-1990. - V. 247. - P. 1465-1468. 6. Tang D. C. , Devit M., Jonston S.A. //Nature - 1992. - V. 356. - P. 152-154. 7. Ulmer J.B., Donnelly J.J., Parker S.F. et al. //Science. - 1993. - V. 259. - P. 1745-1748. 8. Патент США 5792645A. Beug, Yartmut; Birnstiel, Max L. et al. "Комплексы белков с поликатионными нуклеиновыми кислотами и способы их использования". Опубликован 06.06.1994 г. 9. Щелкунов С.Н. Клонирование генов. //Новосибирск. - "Наука". - 1986. - 228 С. 10. Маниатис Т., Фрич Э., Сэмбрук Дж. //Молекулярное клонирование. - М.: Мир., 1984. - 479 с. 11. Иммунологические методы. Под ред. Г. Фримеля. - М. "Медицина". - 1987. 12. Коробко В.Г., Давыдов И.В., Шингарова Л.Н. и др. Гены гибридных лимфокинов человека. 1. Конструирование рекомбинантных плазмид, кодирующих гибриды иммунного интерферона и факторов некроза опухолей человека. //Биоорган. химия. - 1991. - Т. 17. - 2. - С. 189-196.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6PD4A Изменение наименования, фамилии, имени, отчества патентообладателя
(73) Патентообладатель(и):
Федеральное бюджетное учреждение науки «Государственный научный центр вирусологии и биотехнологии «Вектор» (RU)
Адрес для переписки:
630559, Новосибирская обл., Новосибирский р-н., р.п. Кольцово, ФБУН ГНЦ ВБ «Вектор»
Дата публикации: 20.03.2012