Способ изготовления изделий из углеродных композиционных материалов
Изобретение предназначено для химической и металлургической промышленности и может быть использовано при получении тиглей, деталей колонных аппаратов. Готовят суспензию из мелкодисперсного наполнителя и невспенивающегося безусадочного полимерного связующего. В качестве мелкодисперсного наполнителя можно использовать порошки стеклообразующих композиций фракциями не более 40 мкм, порошки углерода, карбидо- и/или нитридо-, и/или карбонитридообразующих металлов или неметаллов. Суспензию наносят на тканевые заготовки, формируют из них пакет и уплотняют его пироуглеродом из газовой фазы. При использовании порошков стеклообразующих композиций суспензию наносят на один из внутренних слоев пакета из тканевых заготовок и перед уплотнением проводят дополнительную термообработку при температуре оплавления стеклообразующей композиции. При использовании порошков углерода, карбидо- и/или нитридо-, и/или карбонитридообразующих порошков дополнительную термообработку проводят после или при уплотнении пироуглеродом при температуре карбидизации, нитридизации или карбонитридизации соответствующего металла или неметалла. Уплотнение пироуглеродом проводят термоградиентным методом при избыточном давлении метана 0,025-0,03 атм и скорости перемещения зоны пиролиза 0,1-0,5 мм/ч с температурой 950-1000oС. Изобретение позволяет понизить проницаемость изделий, повысить надежность их работы под давлением. 7 з.п. ф-лы, 1 табл.
Изобретение относится к изготовлению изделий из углеродных композиционных материалов с пониженной проницаемостью и может быть использовано при изготовлении плавильных, раздаточных тиглей, тиглей для электролиза расплавов солей, а также деталей колонных аппаратов и др. оборудования в химической и химико-металлургической промышленностях.
Известен способ изготовления изделий из углерода, включающий заливку фенолформальдегидной смолы резольного типа в форму, отверждение смолы под давлением, термообработку полученной заготовки при коночной температуре 1700oС в защитной атмосфере (Сборник трудов 6, "Конструкционные материалы на основе графита", 1971, М., Металлургия, с. 132). Способ позволяет изготавливать непроницаемые для жидкостей и газов изделия, несмотря на низкую плотность получаемого при этом материала. Достигается это благодаря тому, что материал не имеет открытых пор. За свою специфичную структуру и непроницаемость материал получил название "стеклоуглерод". Недостатком способа является сравнительно низкая прочность материала и невозможность изготовления из него крупногабаритных изделий из-за возникающих при термообработке усадочных процессов, ведущих к растрескиванию заготовки. Наиболее близким по технической сущности к заявляемому способу является способ, включающий нанесение суспензии из дисперсного наполнителя и связующего на тканевые заготовки, послойное формирование из них пакета и уплотнение его углеродным связующим, причем в качестве дисперсного наполнителя в суспензии используют измельченный графит фракцией не более 90 мкм, в качестве связующего - фенолформальдегидное связующее, претерпевающее в процессе нагрева усадку и вспенивание, а уплотнение пакета тканевых заготовок производят коксом, образующимся при карбонизации предварительно отвержденного связующего, с последующим доуплотнением материала пироуглеродом из газовой фазы (авт. св. СССР 1774521, С 04 В 35/52, 1992). Способ позволяет изготавливать крупногабаритные изделия из материала с более высокой прочностью, чем из материала "стеклоуглерод". Недостатком способа является сравнительно высокая проницаемость материала изделий, что усложняет процесс их последующей герметизации, проводимой с целью обеспечения работоспособности изделий при перепаде давлений. Заявляемый способ позволяет понизить проницаемость материала изделий за счет получения по толщине изделия тонких слоев материала пониженной, в сравнении с остальной частью материала, проницаемости, что упрощает процесс окончательной герметизации изделий и повышает надежность работы их под давлением. Это достигается тем, что в способе изготовления изделий из углеродных композиционных материалов, включающем нанесение суспензии из мелкодисперсного наполнителя и полимерного связующего на тканевые заготовки из углеродных волокон, пословное формирование пакета из тканевых заготовок и уплотнение пакета из тканевых заготовок углеродным связующим, суспензию из мелкодисперсного наполнителя и полимерного связующего наносят на расположенные в средней по толщине части пакета тканевые заготовки, причем в суспензии в качестве мелкодисперсного наполнителя используют порошки углерода, или карбидо-, карбонитридообразующих металлов или неметаллов, или их смеси, или порошки стеклообразующих композиций фракциями не более 40 мкм, а в качестве полимерного связующего используют невспенивающееся безусадочное полимерное связующее, уплотнение пакета из тканевых заготовок производят пироуглеродом из газовой фазы, при этом до или после, или при уплотнении пакета из тканевых заготовок пироуглеродом дополнительно проводят его термическую или термохимическую обработку. В суспензии в качестве мелкодисперсного наполнителя можно использовать порошки стеклообразующих композиций, суспензию можно наносить на один из внутренних слоев пакета из тканевых заготовок, проводить термическую обработку пакета из тканевых заготовок при температуре оплавления стеклообразующей композиции выше температуры уплотнении пироуглеродом, после чего пакеты из тканевых заготовок уплотнить пироуглеродом из газовой фазы изотермическим методом. Уплотнение пакета из тканевых заготовок пироуглеродом из газовой фазы можно производить термоградиентным методом при избыточном давлении метана 0,025-0,03 атм и скорости перемещения зоны пиролиза 0,1-0,5 мм/ч с температурой 950-1000oС. В качестве мелкодисперсного наполнителя можно использовать порошки тугоплавкого карбидо-, и/или нитридо-, и/или карбонитридообразующего металла или неметалла, или их смесь с углеродным порошком, при этом после или при уплотнении пакета из тканевых заготовок можно проводить термическую обработку материала пакета при температуре карбидизации, нитридизации или карбонитридизации соответствующего металла или неметалла. При уплотнении пакета из тканевых заготовок пироуглеродом термоградиентным методом можно проводить дополнительное уплотнение пироуглеродом мелкодисперсного наполнителя и прилегающих к нему слоев пакета из тканевых заготовок, для чего недопереместив зону пиролиза до слоя мелкодисперсного наполнителя на 1-2 мм, снижают парциальное давление метана до 200-300 мм рт. ст., а скорость перемещения зоны пиролиза снижают до 0,025-0,05 мм/ч, затем после перемещения зоны пиролиза через слой мелкодисперсного наполнителя производят изотермическую выдержку в течение 60-90 ч при парциальном давлении метана 20-30 мм рт. ст., не перемещая при этом зону пиролиза, после чего уплотняют остальные по толщине части пакета из тканевых заготовок пироуглеродом термоградиентным методом. После доуплотнения пироуглеродом при пониженном парциальном давлении метана слоя мелкодисперсного наполнителя и прилегающих к нему слоев пакета из тканевых заготовок можно проводить дополнительную термическую обработку в инертной среде при температуре карбидизации соответстующего металла или неметалла и уплотнить остальные по толщине части пакета пироуглеродом термоградиентным методом. При уплотнении пакета из тканевых заготовок пироуглеродом термоградиентным методом, недопереместив зону пиролиза до слоя мелкодисперсного наполнителя на 1-2 мм, можно проводить термохимическую обработку, для чего в зону пиролиза подают смесь метана с азотом, при этом зону пиролиза перемещают со скоростью 0,025-0,05 мм/ч к слою мелкодисперсного наполнителя, а содержание азота в смеси увеличивают от 50 до 90%, затем зону пиролиза перемещают через слой мелкодисперсного наполнителя, а содержание азота доводят до 100%, причем температуру повышают до температуры нитридизации соответствующего металла или неметалла, не перемещая при этом зону пиролиза в течение 60-90 ч, после чего уплотняют остальные по толщине части пакета из тканевых заготовок пироуглеродом термоградиентным методом. При уплотнении пакета из тканевых заготовок пироуглеродом термоградиентным методом, после перемещения зоны пиролиза через слой мелкодисперсного наполнителя или после изотермической выдержки в течение 60-90 ч при парциальном давлении метана 20-30 мм рт. ст. можно производить термохимическую обработку в среде азота при температуре карбонитридизации соответствующего металла или неметалла, не перемещая при этом зону пиролиза в течение 60-90 ч, после чего уплотняют остальные по толщине части пакета из тканевых заготовок пироуглеродом термоградиентным методом. Нанесение суспензии из мелкодисперсного наполнителя и полимерного связующего на расположенные в средней по толщине части пакета тканевые заготовки позволяет создать предпосылки для изменения их пористой структуры, а в конечном итоге - формирования на их основе (после уплотнения их пироуглеродом и дополнительной термической или термохимической обработки) слоев материала пониженной проницаемости (или вообще непроницаемых) при сохранении физико-механических и химических свойств материала наружных слоев изделия, ответственных за его прочность и коррозионную стойкость. Использование в суспензии в качестве мелкодисперсного наполнителя порошков фракциями не более 40 мкм, а в качестве полимерного связующего - невспенивающегося безусадочного полимерного связующего позволяет заполнить межволоконные поры тканевых заготовок мелкодисперсным наполнителем и таким образом перевести крупные межволоконные и межслоевые поры этой части пакета в средние и мелкие, выровняв исходную (перед уплотнением пироуглеродом) пористость этой части пакета, и, тем самым, создать предпосылки (условия) для получения после ее уплотнении пироуглеродом материала с развитой тонкопористой структурой и преимущественным содержанием закрытых пор. Использование в суспензии в качестве дисперсного наполнителя порошков фракциями более 40 мкм не позволило бы достаточно хорошо заполнить им межволоконные и межслоевые поры тканевых заготовок. Использование вспенивающегося и претерпевающего при нагреве усадку полимерного связующего привело бы к нарушению исходной перед уплотнением пироуглеродом средней и мелкопористой структуры пакета по причине быстрого и спонтанного выделения газов и образования усадочных трещин. Уплотнение пакета пироуглеродом из газовой фазы позволяет получить материал средних по толщине слоев изделия с развитой тонкопористой структурой и преимущественным содержанием закрытых пор, что в свою очередь позволяет существенно снизить его проницаемость (снизить коэффициент газопроницаемости с 1

Формула изобретения
1. Способ изготовления изделий из углеродных композиционных материалов, включающий нанесение суспензии из мелкодисперсного наполнителя и полимерного связующего на тканевые заготовки из углеродных волокон, послойное формирование пакета из тканевых заготовок и его уплотнение пироуглеродом из газовой фазы, отличающийся тем, что суспензию из мелкодисперсного наполнителя и полимерного связующего наносят на тканевые заготовки, расположенные в средней по толщине части пакета, в качестве мелкодисперсного наполнителя используют порошки углерода, или карбидо-, нитридо-, карбонитридообразующих металлов, неметаллов, или их смеси, или порошки стеклообразующих композиций фракциями не более 40 мкм, а в качестве полимерного связующего используют невспенивающееся безусадочное полимерное связующее, при этом до или после или при уплотнении пакета из тканевых заготовок пироуглеродом дополнительно проводят его термическую или термохимическую обработку. 2. Способ по п. 1, отличающийся тем, что при использовании в качестве мелкодисперсного наполнителя порошков стеклообразующих композиций суспензию наносят на один из внутренних слоев пакета из тканевых заготовок, а его дополнительную термическую обработку проводят при температуре оплавления стеклообразующей композиции, превышающей температуру уплотнения пироуглеродом, после чего уплотнение пироуглеродом проводят изотермическим методом. 3. Способ по п.1, отличающийся тем, что уплотнение пакета из тканевых заготовок пироуглеродом из газовой фазы производят термоградиентным методом при избыточном давлении метана 0,025-0,03 атм и скорости перемещения зоны пиролиза 0,1-0,5 мм/ч с температурой 950-1000oС. 4. Способ по пп.1 и 3, отличающийся тем, что при использовании в качестве мелкодисперсного наполнителя порошков тугоплавких карбидо- и/или нитридо-, и/или карбонитридообразующего металла или неметалла, или их смеси с углеродным порошком термическую или термохимическую обработку проводят после или при уплотнении пироуглеродом при температуре карбидизации, нитридизации или карбонитридизации соответствующего металла или неметалла. 5. Способ по пп.1, 3 и 4, отличающийся тем, что при уплотнении пакета из тканевых заготовок пироуглеродом термоградиентным методом проводят дополнительное уплотнение пироуглеродом мелкодисперсного наполнителя и прилегающих к нему слоев пакета из тканевых заготовок, для чего, недопереместив зону пиролиза до слоя мелкодисперсного наполнителя на 1-2 мм, снижают парциальное давление метана до 200-300 мм рт. ст., а скорость перемещения зоны пиролиза снижают до 0,025-0,05 мм/ч, затем после перемещения зоны пиролиза через слой мелкодисперсного наполнителя производят изотермическую выдержку в течение 60-90 ч при парциальном давлении метана 20-30 мм рт.ст., не перемещая при этом зону пиролиза, после чего уплотняют остальные по толщине части пакета из тканевых заготовок пироуглеродом термоградиентным методом. 6. Способ по пп.1 и 3-5, отличающийся тем, что после дополнительного уплотнения пироуглеродом мелкодисперсного наполнителя и прилегающих к нему слоев пакета из тканевых заготовок при пониженном парциальном давлении метана проводят дополнительную термическую обработку в инертной среде при температуре карбидизации соответствующего металла или неметалла, после чего уплотняют пироуглеродом остальные по толщине части пакета термоградиентным методом. 7. Способ по пп.1, 3 и 4, отличающийся, тем, что при уплотнении пакета из тканевых заготовок пироуглеродом термоградиентным методом, не допереместив зону пиролиза до слоя мелкодисперсного наполнителя на 1-2 мм, проводят термохимическую обработку, для чего в зону пиролиза подают смесь метана с азотом, при этом зону пиролиза перемещают со скоростью 0,025-0,05 мм/ч к слою мелкодисперсного наполнителя, а содержание азота в смеси увеличивают от 50 до 90%, затем зону пиролиза перемещают через слой мелкодисперсного наполнителя, а содержание азота доводят до 100%, причем температуру повышают до температуры нитридизации соответствующего металла или неметалла, не перемещая при этом зону пиролиза в течение 60-90 ч, после чего уплотняют остальные по толщине части пакета из тканевых заготовок пироуглеродом термоградиентным методом. 8. Способ по пп.1 и 3-5, отличающийся тем, что при уплотнении пакета из тканевых заготовок пироуглеродом термоградиентным методом после перемещения зоны пиролиза через слой мелкодисперсного наполнителя или после изотермической выдержки в течение 60-90 ч при парциальном давлении метана 20-30 мм рт. ст. производят термохимическую обработку в среде азота при температуре карбонитридизации соответствующего металла или неметалла, при этом зону пиролиза не перемещают в течение 60-90 ч, после чего уплотняют остальные по толщине части пакета из тканевых заготовок пироуглеродом термоградиентным методом.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе
Дата прекращения действия патента: 04.04.2010
Дата публикации: 10.12.2011