Интеркалированные соединения оксида графита с додекагидро- клозо-додекаборной кислотой и ее солями, их применение в качестве пленкообразователя водоэмульсионных красок и способ получения полимерных покрытий
Описываются интеркалированные соединения оксида графита с додекагидро-клозо-додекаборной кислотой и ее солями состава 4OхНу х nRzB12H12, где х = 0,58-1,98; у = 0,54-0,75; 0,4 < n
1,98; z = 2 для R-H+, NH4+, катионы щелочных металлов и z = 1 для R - катионы щелочноземельных металлов, и способ получения полимерных покрытий на основе указанных соединений. Техническим результатом является то, что покрытия являются химически и термически устойчивыми, обладают хорошей адгезией и антикоррозионными свойствами. 2 с. и 2 з.п. ф-лы, 3 табл.
Изобретение относится к химии углерода и полиэдрических боргидридных соединений, а именно интеркалированным соединениям оксида графита с додекагидро-клозо-додекаборной кислотой и ее солями состава C4OxHy
nRzB12H12, где x=0,58-1,98; y=0,54-0,75, 0,4<n
1,98; z=2 (для R=H+ NH4+, катионы щелочных металлов) или z=1 (для R-катионы щелочноземельных металлов), которые могут быть использованы в качестве пленкообразователя водоэмульсионных красок для получения термостойкой бор-углеродсодержащей полимерной основы покрытий, а также к способу получения указанных покрытий.
nH2B12H12, где x=0,58-1,98, y= 0,54-0,75; n=0,1-0,4 (Пат. РФ N 2123474, оп. 20.12.98., БИ N 35). Данные соединения являются наиболее близкими по строению к заявляемым и предложены для использования в качестве исходных для получения карбида бора, что обусловлено свойством указанных веществ, заключающемся в высокой экзотермичности взрывного разложения в атмосфере кислорода. Данные соединения также склонны к пленкообразованию, однако покрытия на их основе гидрофильны, а при нагревании с целью полимеризации в силу отмеченного свойства соединения могут разлагаться со взрывом. Наиболее близкими по назначению и составу к заявляемым соединениям являются додекагидро-клозо-додекаборная кислота и ее соли состава RzB12H12, где z= 2 (для R - H+, NH4+, катионы щелочных металлов и z=1 (для R-катионы щелочноземельных металлов), проявляющие склонность к образованию полимеров, имеющих хорошие адгезионные и антикоррозионные свойства (Кузнецов Н.Т. Химия полиэдрических боргидридных анионов. В сб. научн. тр. ИОНХ под ред. Цивадзе А. Ю. Исследования по неорганической химии и химической технологии. М.: Наука, 1988. С. 78-97). При нагревании на воздухе кристаллогидрата кислоты (H3O)2B12H12
4H2O до 140oC в результате процесса поликонденсации образуется полимерное соединение в виде твердой объемной пенообразной массы, нерастворимой как в воде, так и органических растворителях. ИК-спектр этого полимерного продукта, в частности полоса поглощения в области 1080 см-1, свидетельствует о сохранении икосаэдрического остова. Это - полимер ионного типа, имеющий в основном линейное строение, в котором отдельные звенья полимера связаны между собой через кислородные мостики по схеме: [-O-B12H10-]2- При нагревании такого полимера на воздухе окисление с образованием оксида бора начинается лишь при температуре выше 580oC, т.е. это достаточно термостойкий продукт. Образование подобных полимеров наблюдается также и при термическом разложении на воздухе солей с В12H122--анионом. Температурный интервал существования таких полимерных образований для солей щелочного ряда максимален у литиевой соли (100-430oC). У солей щелочноземельных элементов наибольшим температурным интервалом существования обладает полимерная форма магниевой соли (260-820oC). Полимерные покрытия на основе известных додекагидро-клозо-додекаборатов обладают следующими недостатками. Во-первых, затруднено получение тонкого равномерного покрытия. Как показали наши исследования, при сушке нанесенного на обезжиренную стеклянную пластинку тонкого равномерного слоя раствора RzB12H12 происходит образование кристаллического осадка соответствующего додекагидро-клозо-додекабората в виде отдельных кристалликов. Вследствие этого при полимеризации в местах нахождения кристалликов образуется достаточно толстый слой покрытия, а в промежутках между ними - более тонкий слой. При сушке тонкого слоя такого раствора, нанесенного на неровную поверхность, имеющего дефекты в виде углублений и др., происходит их заполнение. В обоих случаях это приводит к образованию неравномерного по толщине покрытия. Кроме того, такие покрытия практически невозможно получить на наклонных поверхностях, а тем более на вертикальных, т.к. происходит стекание растворов вниз. Вторым недостатком покрытий на основе додекагидро-клозо-додекаборной кислоты или ее солей является относительно высокая температура их полимеризации. Задачей изобретения является получение новых соединений на основе додекагидро-клозо-додекаборной кислоты и ее солей, которые могут быть использованы в качестве пленкообразователя водоэмульсионных красок для получения термостойких бор-углеродсодержащих полимерных покрытий, а также снижение температуры полимеризации. Поставленная задача решается интеркалированными соединениями оксида графита с додекагидро-клозо-додекаборной кислотой и ее солями состава 4OxHy
nRzB12H12, где x= 0,58-1,98; y=0,54-0,75; 0,4<n
1,98; z=2 (для R-H+, NH4+, катионы щелочных металлов) или z=1 (для R - катионы щелочноземельных металлов). Катионы металлов предпочтительно представляют собой Li+, Na+, K+, Mg2+, Ca2+, Zn2+. Предлагаемые в качестве пленкообразователя водоэмульсионных красок интеркалированные соединения оксида графита с додекагидро-клозо-додекаборной кислотой и ее солями представляют собой соединения внедрения. В такого вида соединениях в слоистую графитоподобную матрицу ОГ внедряются (интеркалируются) молекулы, в данном случае, RzB12Н12. Связь RzB12H12 с матрицей осуществляется за счет электронодефицитной природы B12H122--аниона и донорной способности атомов кислорода CO- и OH-групп ОГ. Рентгенограммы заявляемых соединений характерны для слоистых структур. При этом их межплоскостные расстояния по сравнению с исходным ОГ заметно больше и составляет 10,53-16,5
в зависимости от конкретного R и n (ДРОН-3,0;
CuK
), что свидетельствует о внедрении молекул RzB12H12 в слоистую структуру оксида графита. Набор полос поглощения на ИК-спектрах соединения при 1070, 1600, 1720 и 3200 см-1 характеризуют CO- и OH-группы оксида графита (Накомото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир. 1968. С). Полосы поглощения при 1080 и 2480 см-1 относятся к В12H12-2-аниону (Кузнецов Н.Т., Климчук Г.С. //Журн. неорг. хим. 1971. Т. 16. N 5. С. 1218-1223). Определение углерода проводили известными методами микроанализа (Л.Мазор. Методы органического анализа. М.: Мир, 1986, С. 299). Бор определяли в весовой форме В2О3, в виде твердого остатка, получаемого в ходе микроанализа образца на углерод. Содержание кислорода находили по разнице (Clauss A., Plass R. // Z. anorg. allg. Chem. 1957. В. 294. Н. 5-6. S. 205-220). Изобретение направлено также на способ получения полимерных покрытий на основе предлагаемых соединений путем полимеризации при нагревании предварительно нанесенного на окрашиваемую поверхность и высушенного до затвердевания слоя покрытия. Термообработку покрытия осуществляют в интервале температур от температуры начала полимеризации до температуры термодеструкции компонентов полимера. В процессе полимеризации атомы кислорода кислородсодержащих группировок матрицы ОГ взаимодействуют с 12H122--анионом, переводя его в полимерную форму по схеме: C4OxHy xRzB12H12
4C + x[O-B12H10-]2- + zxR+ +(x+0,5y)H2 (1) При этом сама матрица восстанавливается до углерода. Таким образом при нагревании в результате внутримолекулярной окислительно-восстановительной реакции образуется композит, в котором основой является кислородсодержащий полимер додекагидро-клозо-додекабората, обладающий хорошей адгезией и антикоррозионными свойствами, с равномерно распределенными в нем в качестве наполнителя инертными частичками углерода. Установлено, что, во-первых, в результате химического превращения при нагревании обе составляющие этих соединений - и матрица и интеркалат - переходят в более устойчивую, и химически, и термически, форму. И, во-вторых, большое практическое значение имеет то, что температуры полимеризации новых интеркалированных соединений оксида с додекагидро-клозо-додекаборатами заметно ниже температуры полимеризации соответствующих чистых RzB12H12 (табл. 1). Свойства композита резко отличаются от исходного неполимеризованного (неотожженного) интеркалированного соединения. Во-первых, меняется цвет от темно-коричневого до черного вследствие образования элементарного углерода. Во-вторых, нанесенное на подложку полимеризованное покрытие устойчиво при длительном соприкосновении с водой, водными растворами кислот, гидразина, а также бензином, маслами, ацетоном, этанолом и т.п. В-третьих, образец такого покрытия выдерживает нагревание, не разрушаясь, до высоких температур (минимальная для интеркалированного соединения оксида графита с Li2B12H12 равна 430oC), значительно превышающих температуру разложения чистого ОГ (180oC). Полимеризованные покрытия обладают хорошей адгезией и антикоррозионными свойствами. Предлагаемые интеркалированные соединения оксида графита с додекагидро-клозо-додекаборной кислотой и ее солями получают взаимодействием водного геля ОГ с водным раствором додекагидро-клозо-додекаборной кислоты или ее соли, взятыми в мольном отношении C4OxHy : RzB12H12 = 1:n, где 0,4<n
1,98). В качестве солей додекагидро-клозо-додекаборной кислоты используют водорастворимые, не склонные к гидролизу по катиону соли, преимущественно Li+, Na+, K+, NH42+, Mg2+, Ca2+, Zn2+. Смесь исходных соединений тщательно перемешивают для равномерного интеркалирования матрицы. Затем полученный гель концентрируют до консистенции, позволяющей использовать его в качестве краски. Экспериментально установлено, что водные гели предлагаемых соединений, будучи нанесенными на подложку, как и исходный ОГ, дают при сушке быстротвердеющие тонкие, равномерные по толщине даже на вертикальной поверхности покрытия. Краску наносят на закрашиваемую поверхность известными способами и сушат при комнатной температуре до затвердевания. В зависимости от требуемой толщины покрытия нанесение слоев повторяют несколько раз. Мольное соотношение компонентов C4OxHy : RzB12H12 в предлагаемых соединениях составляет 1:n, где 0,4<n
1,98, а "x" характеризует степень окисленности матрицы ОГ в конкретном интеркалированном соединении оксида графита с додекагидроклозо-додекаборной кислотой или ее солями. Оптимальное мольное соотношение компонентов C4OxHy : RzB12H12, соответствующее стехиометрии реакции 1, равно 1:(0,58-1,98), т.е. когда n=x. При этом исходные химически активные компоненты, за счет которых происходит равномерное распределение жидкого слоя краски и ее адгезия к поверхности, после отжига полностью переходят в новые стабильные соединения: RzВ12H12, в свою частично окисленную полимерную форму, а ОГ - в инертный углерод. При количестве RzВ12H12, меньшем 0,4 на 1 моль C4OxHy, краска обладает хорошими пленкообразующими свойствами: покрытие ложится равномерным слоем, быстрее сохнет, при этом уменьшается расход относительно дорогого додекагидро-клозо-додекабората. Однако после реакции полимеризации (1), часть ОГ остается в свободном виде. Поэтому в случае работы покрытия в жестких температурных условиях, при нагревании выше 180oC возможно его термическое разложение со вспучиванием покрытия и снижением его качества. Кроме того, присутствие свободного ОГ приводит к химической неустойчивости покрытия. Такое покрытие гидрофильно и поглощает воду из влажного воздуха. При контакте с электролитами может происходить коагуляция избыточного свободного ОГ, а под действием сильных восстановителей, таких как гидразин, может происходить разложение ОГ, что также приводит к снижению его качества. Оно набухает в полярных растворителях, например в ацетоне, этаноле, ацетонитриле. При количестве RzВ12H12 больше 1,98 моль на 1 моль C4OxHy при сушке на воздухе трудно добиться полного затвердевания покрытия, а после реакции полимеризации в покрытии будет присутствовать свободный неполимеризованный додекагидро-клозо-додекаборат. Поскольку сама додекагидро-клозо-додекаборная кислота и ее соли (кроме аммонийной и калиевой) образуют сильно гигроскопичные кристаллогидраты, покрытие будет гидрофильным. Температурный режим полимеризации покрытия выбирают в пределах от температуры начала полимеризации до температуры термодеструкции образующегося композита. В этом случае обеспечивается прохождение внутримолекулярной окислительно-восстановительной реакции с образованием углерода и полимерной формы додекагидро-клозо-додекабората. При термообработке ниже температуры начала полимеризации формирование полимерного устойчивого покрытия не происходит. Сушка покрытия на основе конкретного интеркалированного соединения оксида графита с додекагидро-клозо-додекаборатами должна ограничиваться температурой окисления углерода (600oC) или полимерной формы соответствующего додекагидро-клозо-додекабората (табл. 1), которые образуются в результате реакции (1). Для полученных образцов покрытий на основе новых интеркалированных соединений оксида графита с додекагидро-клозо-додекаборной кислотой и ее солями состава 4OxHy x nRzВ12H12 были определены показатели их качества и физико-химические характеристики. Определяли устойчивость покрытий при длительном соприкосновении с водой (ГОСТ 21065-75), водными растворами кислот (5%-ный раствор HCl, 25oC), гидразина (30%-ный раствор N2H4, 35oC), бензином (35oC), маслами (90oC), ацетоном (35oC), этанолом (35oC) и т.п. Адгезию отожженного интеркалированного соединения оксида графита с додекагидро-клозо-додекаборной кислотой и ее солями определяли по методу решетчатых надрезов (ГОСТ 6806-78). Солестойкость - в камере солевого тумана (5%-ный раствор NaCl, температура 35-40oC, относительная влажность 95-100%) и влагостойкость - в камере влажности (температура 50-55oC, относительная влажность 95-100%) определяли также по стандартной методике (РТМ 35-61). Исследовали также термостойкость полученных покрытий, выдерживая их при высокой температуре в течение нескольких часов с последующей оценкой качественных характеристик. Изобретение иллюстрируется следующими примерами. Пример 1. 100 мл водного геля ОГ, содержащего 0,57550 г (10,0 ммоль) C4O0,58H0,54, тщательно перемешивают с 20 мл водного раствора додекагидро-клозо-додекаборной кислоты, содержащей 0,83440 г (5,80 ммоль) H2В12H12. Получают 120 мл геля интеркалированного соединения состава C4O0,58H0,54
0,58H2B12H12, который используют для получения покрытия. Для этого гель наносят кисточкой на обезжиренную стеклянную пластинку ровным тонким слоем и оставляют на воздухе при комнатной температуре для образования сухого твердого покрытия. Затем аналогичным образом наносят еще 2 слоя покрытия. Для полимеризации помещают пластинку в сушильный шкаф, нагревают его до 120oC и выдерживают 0,5 ч. Получают тонкое ровное покрытие черного цвета без следов вздутий, отслаивания, а также включений в него пузырьков воздуха. Проводят определение химических и физико-механических свойств полученного покрытия. Как видно из результатов, приведенных в табл. 3, покрытие имеет хорошие показатели по водостойкости, влагостойкости и солестойкости. Оно выдерживает испытания на химическую устойчивость при контакте с растворами соляной кислоты, гидразина, минеральным маслом, бензином, ацетоном, этанолом. Адгезия полученного покрытия соответствует 1 баллу. Для проверки термической устойчивости покрытие подвергают нагреванию на воздухе при температуре 550oC в течение 3 ч. Видимых следов разрушения покрытия или снижения его адгезии не зафиксировано. Данные по остальным примерам получения покрытий на основе заявляемых интеркалированных соединений оксида графита с додекагидро-клозо-додекаборатами представлены в табл. 2, а свойства покрытия - в табл. 3. В примерах 1-7 получение интеркалированных соединений оксида графита с RzB12H12 и его полимеризационную сушку проводят в оптимальных условиях. Поэтому получаемое покрытие обладает высокой адгезией, водо-, влаго-, солестойкостью, химически стойко к действию раствора соляной кислоты, не теряет своих свойств при длительном контакте с маслом, бензином, этанолом и гидразином, выдерживает нагревание до достаточно высоких температур, по сравнению с покрытием из чистого ОГ (пример 17). При использовании ОГ в количествах, превышающих требуемое по реакции 1 (примеры 8, 9), качество покрытия заметно снижается. Это объясняется присутствием в структуре покрытия свободного, невосстановленного оксида графита. Хотя такое покрытие имеет в сухом состоянии хорошую адгезию, оно менее устойчиво к действию влажного воздуха, воды, водных растворов кислот и гидразина, полярных органических растворителей (этанола). При нагревании до высоких температур снижается его адгезия (8), а при большом избытке ОГ (9) происходит отшелушивание покрытия от основы. Связано это с разложением присутствующего в составе покрытия оксида графита до углерода (сажи). При этом покрытие разрыхляется и даже отслаивается. При использовании RzВ12Н12 в количествах, превышающих требуемое по реакции 1 (примеры 10-13, 16), получаемое покрытие после полимеризационной сушки гидрофильно, т. к. в нем остается избыток свободного zВ12H12, который (кроме примера 13, в котором избыточным является K2B12H12), представляет собой сильно гигроскопичный кристаллогидрат. В зависимости от избытка RzB12H12 покрытие может быть либо чуть влажным, либо невысыхающим и липким. Хотя при контакте с водой идет выщелачивание избыточного RzВ12H12 из покрытия и возрастает его пористость, оно достаточно хорошо выдерживает все испытания. Избыточный RzВ12H12 можно перевести в неактивную полимерную форму, проводя сушку при температуре полимеризации чистого додекагидро-клозо-додекабората (пример 16). Как видно из табл. 3, в результате этого получают высококачественное покрытие с высокой адгезией и устойчивостью как к водным растворам, так и к органическим растворителям, что, впрочем, может быть достигнуто и при меньшем содержании RzB12H12 и более низкой температуре полимеризационной сушки. Таким образом, избыток додекагидро-клозо-додекабората повышает его в цене, не улучшая его качества. Полимеризационная сушка покрытия при температуре ниже оптимальной даже в течение длительного времени (пример 14) не приводит к образованию устойчивого покрытия. Такое покрытие легко может быть удалено при его протирании ваткой или смыто водой, что наглядно видно в эксперименте по определению водостойкости - покрытие растворяется в воде. Однако оно прекрасно выдерживает тест на термоустойчивость, т.к. при нагревании при температуре выше 100oC происходит внутримолекулярная окислительно-восстановительная реакция. При этом получают качественное покрытие с высокой адгезией и устойчивостью к воде. Полимеризационная сушка возможна при более высокой температуре, во-первых, для ускорения процесса (интеркалированное соединение оксида графита с CaB12H12, примеры 6, 9, 15). Во-вторых, как уже показано на примере 16, повышая температуру сушки, можно добиться полимеризации избыточного RzВ12H12 с получением качественного покрытия.Формула изобретения
1. Интеркалированные соединения оксида графита с додекагидроклозо-додекаборной кислотой и ее солями состава 4OxHy x nRzB12H12, где х = 0,58 - 1,98; y = 054 - 0,75; 0,4 < n
1,98; z = 2 для R - H+, NH4+, катионы щелочных металлов и z = 1 для R - катионы щелочноземельных металлов. 2. Соединения по п.1, отличающиеся тем, что катионы щелочных и щелочноземельных металлов представляют собой Li+, Na+, K+, Mg2+, Ca2+ или Zn2+. 3. Соединения по пп.1 и 2, в качестве пленкообразователя водоэмульсионных красок для получения термостойких боруглеродсодержащих полимерных покрытий. 4. Способ получения полимерных покрытий, отличающийся тем, что гель любого из соединений по пп.1 и 2, наносят на окрашиваемую поверхность, полученное покрытие сушат до затвердевания, после чего полимеризуют, подвергая термообработке в интервале температур от температуры начала полимеризации до температуры термодеструкции образовавшегося соответствующего композита.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

















