Монокристаллический лазерный материал на основе оксисиликатов редкоземельных элементов
Изобретение относится к материалам для квантовой электроники, в частности, к монокристаллам для иттербиевых лазеров с длиной волны около 1,064 мкм, перестраиваемых в диапазоне 1-1,08 мкм с диодной накачкой, и для получения лазерной генерации в режиме сверхкоротких импульсов. С целью адаптации иттербиевых лазеров к существующей элементной базе предлагается монокристаллический лазерный материал на основе оксисиликатов редкоземельных элементов с трехвалентным иттербием в качестве активатора в соответствии с химической формулой MRe4-xYbx(SiO4)3O, где М - кальций (Са) или стронций (Sr), Re - иттрий (Y), гадолиний (Gd), лантан (La); а 0,01х
4, излучающий на длине волны около 1,064 мкм, с полушириной полосы люминесценции около 70 нм, длительностью лазерных импульсов порядка 10 фс, полушириной люминесцентной области перестройки 40 нм. 1 табл., 3 ил.
Изобретение относится к материалам для квантовой электроники, в частности, к монокристаллам для иттербиевых лазеров с длиной волны около 1,064 мкм, перестраиваемых в диапазоне 1-1,08 мкм с диодной накачкой и для получения лазерной генерации в режиме сверхкоротких импульсов.
Известны монокристаллические лазерные материалы, показывающие эффект генерации излучения с длиной волны около 1,064 мкм [1]. Среди них выделяется Nd: Y3Al5O12 (Nd: YAG) как наиболее эффективный и технологичный. Лазеры на кристаллах Nd:YAG, излучающие на длине волны 1,064 мкм, получили широчайшее распространение во всем мире. Но структура лазерных уровней иона Nd3+ не позволяет достичь предельной квантовой эффективности преобразования излучения накачки из-за стоксовых потерь, потерь на перепоглощение и кооперативных эффектов. По сравнению с неодимом иттербий имеет меньший стоксов сдвиг, а следовательно, позволяет достигать большей предельной эффективности преобразования (оптическая квантовая эффективность 91%). Большое радиационное время перехода и малое сечение излучения препятствуют суперлюминесценции. Большие потери на длине волны генерации по сравнению с неодимом, обусловленные термическим заселением соответствующего штарковского компонента нижнего мультиплета, судя по некоторым сообщениям [2], сказываются положительно на качестве пучка лазеров с диодной накачкой. Среди материалов, активированных ионами трехвалентного иттербия, выделяются как наиболее эффективный Yb:Y3Al5O12 (Yb:YAG) [2,3], позволяющий получать генерацию на ионах иттербия с длиной волны 1,03 мкм. К недостаткам этого материала относится большое расхождение в длине волны генерации с наиболее распространенными на данный момент неодимовыми лазерами, излучающими на длинах волн около 1,064 мкм, что осложняет адаптацию существующего оборудования к новой длине волны излучения. Наиболее близким к заявляемому материалу аналогом является монокристаллический лазерный материал, соответствующий формуле MRe4-xNdx(SiO4)3O, где М - кальций (Са) или стронций (Sr), Re - иттрий (Y), гадолиний (Gd), лантан (La) [1] , позволяющий получать генерацию с длиной волны 1,061 мкм. К недостаткам этого материала относятся концентрационное тушение люминесценции и высокие стоксовы потери, что обусловлено наличием ионов Nd3+ Технической задачей является получение монокристаллического лазерного материала на длине волны вблизи 1,064 мкм, обладающего малым стоксовым сдвигом и широкими полосами люминесценции. Для решения технической задачи предлагается монокристаллический материал на основе МRe4-xYbx(SiO4)3О, где М - кальций (Са) или стронций (Sr), Re - иттрий (Y), гадолиний (Gd), лантан (La), а 0,01
Оксид кремния (SiO2) - 13,1481
тщательно перемешивали, прессовали в таблеты и помещали в муфельную печь, где при температуре 950oС проводили синтез в твердой фазе в течение 30 ч. После чего просинтезированное вещество помещалось в тигель и расплавлялось (Тплавл=1850oС). Выращивание кристалла осуществлялось методом Чохральского со скоростью вытягивания 2 мм/сут. В результате был получен прозрачный бесцветный кристалл высокого оптического качества высотой 11 мм и диаметром 12 мм химической формулы СаGd3,97Yb0,03(SiO4)3О. Плотность кристалла, определенная методом гидростатического взвешивания, составила 6,18 г/см3. Аналогично были выращены кристаллы, химические формулы которых приведены в таблице. Если в предлагаемом материале брать иттербия трехвалентного со стехиометрическим коэффициентом х<0,01, то низкая плотность возбуждений в среде, обусловленная низкой концентрацией лазерных ионов, не позволит превысить потери на паразитное поглощение матрицы-основы и говорить о таком материале как о лазерном не имеет смысла. С другой стороны, приближение значений х к 4 (образцы 4, 8, 18, 15) позволяет повысить коэффициент поглощения на длине волны 1,064 мкм и появляется возможность использования предлагаемого материала в качестве пассивных затворов для лазеров, активированных ионами Nd3+. Этому способствуют наличие межштарковского перехода на длине волны вблизи 1,064 мкм, двухуровневая система ионов Yb3+, высокое время жизни лазерного уровня и стойкость к высокоэнергетичному лазерному излучению. Среди кристаллов, приведенных в таблице, выделяются материалы, соответствующие формуле CaY1-xYbx(Si04)30 ( 1-4). Самое высокое сечение лазерного перехода в представленной группе, высокий коэффициент вхождения Yb3+, близкий к 1, и высокое оптическое качество таких кристаллов делают его наиболее перспективным. Образцы 5-7, 9-12, 14, 16, 17 также имели высокое оптическое качество. Свежевыращенные образцы представляли собой були диаметром 10-12 мм и длиной 10-12 мм, бесцветные, с гладкой блестящей поверхностью. Для спектрально-люминесцентных измерений вырезали пластины 4х5 мм2 и от 0,1 до 3 мм толщиной. Спектры поглощения и люминесценции измерялись при помощи дифракционного монохроматора МДР-23 (с решеткой 600 штр/мм) с обратной линейной дисперсией 2,6 нм/мм и шириной щелей не более 0,15 мм [4]. Спектры люминесценции поправлялись на спектральную чувствительность фотоприемника. Спектры эффективного сечения усиления монокристаллов










где











1. А. А. Каминский, Б.М. Антипенко. Многоуровневые функциональные схемы кристаллических лазеров. М.: Наука, 1989, с. 268-269, с. 270. 2. J.Wallace Laser Focus World December 1998, p. 15. 3. T.Y.Fan, J. Quantum Electron., 29, 1457-1459 (1993). 4. А. Н. Зайдель, Г.В. Островская, Ю.И. Островский. Техника и практика спектроскопии. М.: Наука, 1976, с. 108-112. 5. А.А. Каминский Лазерные кристаллы. М.: Наука, 1975, с. 5-8.
Формула изобретения
MRe4-xYbx(SiO4)3O,
где М - кальций (Са) или стронций (Sr);
Re - иттрий (Y), гадолиний (Gd), лантан (La);
а 0,01

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4