Аморфный, карбонированный и фторированный гидроксиапатит для зубных паст и способ его получения
Изобретение относится к технологии получения неорганических материалов, используемых в стоматологии. Аморфный, карбонированный и фторированный гидроксиапатит для зубных паст включает синтезированный материал со структурой гидроксиапатита, при этом он дополнительно содержит карбонатные группы и фтор группы в соответствии с формулой Ca10(PO4)6(OH)2-x-y(CJ3)x/2Fx, где x= 0,01-0,3; y-0,01-0,4, а также способ его получения, заключающийся в медленной нейтрализации в инертной атмосфере водного раствора гидроксида кальция смесью ортофосфорной и фтористоводородной кислот при 8-10oС при отдельном и непрерывном введении в реакционный раствор Са(НСО3)2, а образцы для контроля качества готовой продукции готовят в инертной атмосфере путем сушки и последующего высокотемпературного отжига. Материал полностью совместим с тканями человеческого организма и по химическому составу близок в составу зубной эмали человека, используется в качестве состава для зубных паст. 2 с. п. ф-лы, 1 табл.
Изобретение относится к технологии неорганических материалов, а именно к способу получения аморфного материала заданного в настоящей заявке состава после отжига переходящего в материал со структурой гидроксиапатита, используемого как профилактическая составляющая зубных паст, а также как медицинский материал для заполнения костных дефектов. Таким образом, мы предлагаем группу изобретений: новый материал и конкретный способ его получения, отличительные признаки которого жестко связаны с отличительными признаками материала. Предлагаемый материал должен быть полностью биосовместим с тканями человеческого организма и по химическому составу близок к составу зубной эмали человека. Костная ткань, с точки зрения материаловедения, является композиционным материалом, состоящим из органической матрицы, неорганического вещества и жидкости. Компактная (кортикальная) кость содержит, вес. %: ~ 69% неорганического вещества, ~ 20% белков и ~ 11% жидкости. В зубной эмали количество неорганического вещества значительно выше: ~ 97%, содержание органического вещества составляет ~ 1,7%, жидкости ~ 1,3%. Химический состав зубной эмали [1,2] был определен ориентировочно [1] как: Са - 36,1%; Р - 17,3%; СО2 - 3%; Mg - 0,5%; Na - 0,2%; K - 0,3%; Cl - 0,3%; F - 0,016%; S-0,1%; Сu - 0,01%; SiO2 - 0,03%; Fe - 0,025%; Рb - 0,0071%; эти данные позволяют определить требования к чистоте используемых для синтеза материалов, но не могут дать исчерпывающей информации ни о фазовом составе костной ткани, ни, тем более, о химическом составе фаз в костной ткани, тем более, что общее содержание некоторых элементов меняется с возрастом и зависит от окружающей среды, а один и тот же элемент может одновременно присутствовать в нескольких фазах. Рентгенофазовый анализ (РФА) показывает, что костная ткань представляет собой аморфную (слабокристаллизованную) апатитную фазу. Значительная доля вещества присутствует в виде рентгеноаморфной фазы, что может быть обусловлено и микроскопическими (десятки HМ) размерами кристаллов, дающими на рентгенограмме размытые (диффузные) линии. В связи с вышеизложенным определение фазового и отчасти химического состава образца возможно лишь после высокотемпературного (600-800oС) отжига исследуемых образцов.
В таблице приведены параметры решетки различных образцов, качественно определяющих пределы вариации состава гидроксиапатита (ГА), биосовместимого с тканями человеческого организма. Дополнительные сведения для контроля состава можно получить из анализа ИК-спектров отожженных образцов. Для решетки ГА полосы поглощения СО3 -2, относящиеся к симметричным валентным колебаниям, лежат в области 1450-1410 см-1, к деформационным - 870 см-1; (OН)- ионов - 3572 см-1 (валентные) и 630 см-1 - деформационные; (PО4)-3-aниoнoв - 571 cм-l и 474 см-1. Если в материале имеется примесь трикальцийфосфата, в ИК-спектре появляется полоса при 550 см-1, характерная для колебаний (РО4)-3 -аниона в этой решетке. Примесь карбоната кальция вызывает появление полосы при 714 см-1 соответствующей колебаниям ионов (СО3)-2. Отметим, что карбонат-ионы в структуре ГА могут занимать две позиции А и В, замещая позиции (ОН)-1 и (РО4)-3 ионов соответственно [3] , вызывая изменения как величин постоянных решетки, так и вида ИК-спектров. Меняя условия синтеза, можно управлять распределением ионов (СО3)-2 по этим позициям [1, 3, 4] . Исходя из вышеизложенного, задача поиска материала, близкого к составу ГА зубной эмали, была решена следующим образом: для синтеза был выбран аморфный ГА с изоморфно введенными в него ионами фтора (F-1) и карбонильными ионами (СО3)-2 на место типа А. Количество изоморфно введенных ионов варьируется в пределах, которые дают анализы зубной эмали здоровых людей различных возрастных категорий и отвечают формуле Са10(РO4)6(ОН)2-x-y(СО3)x/2 Fy (где х= 0,01-0,3 и у= 0,01-0,4), причем грансостав этого материала должен характеризоваться кривой распределения размеров частиц с максимумом в области 300А - 500А. Известен материал, используемый для производства зубных паст и заполнения костных дефектов [1, 5, 6, 7, 8, 9] . Речь идет о чистом гидроксиапатите, полученном осаждением. В отличие от предлагаемого в данной заявке этот материал по своему составу отличается от естественного состава костной ткани: не содержит ни карбонатных групп, ни групп фтора. Приведенные в работе данные свидетельствуют о наличии кристаллической структуры применяемых материалов. Вторым изобретением в предлагаемой группе является способ получения материала, рассмотренного в первой части описания, причем отличительные признаки способа получения целиком определяются отличительными признаками самого материала: аморфной структурой, равномерным распределением примесных групп СО3 -2 и F-, при изоморфном вхождении последних в структуру ГА. Известны следующие способы синтеза ГА [1,5 - 10] . 1. Получение ГА осаждением из водных растворов. 1.1. Реакции обмена с участием фосфат-ионов и ионов кальция растворимых солей в щелочной среде 10Са(NО3)2+14KOH+6KH2PO4-->Ca10(PO4)6(OH)2+20KNO3+12H2O, (1); 10Ca(NO3)2+6(NH4)2HPO4+8NH4OH-->Ca10(PO4)6(OH)2+20NH4NO3 +6H2O, (2). 1.2. Нейтрализация гидроксида кальция фосфорной кислотой 10Са(ОН)2+6Н3РO4-->Са10(РO4)6(OH)2+18H2O, (3) или взаимодействие солей со щелочью или кислотой. 1.3. Гидролиз нерастворимых фосфорно-кальциевых солей с добавлением ионов или гидроксил-ионов: 3Са3(РO4)2+СаСl2+2Н2O-->Ca10(РO4)6(OH)2+2НСl, (4); 6СаНРO4+4Са(ОН)2-->Са10(РO4)6(ОН)2+ 3Н2O, (5). 2. Осаждение ГА из растворов органических растворителей. Получение ГА растворов органических растворителей достаточно известно. Большинство этих методик заключаются в проведении реакции в среде органического растворителя, хорошо смешивающегося с водой, между растворимыми в этом растворителе соединениями кальция и фосфора. Органический растворитель удаляют из сферы реакции посредством сушки и отжига. В качестве соединений кальция используют четырехводный нитрат, двухводный ацетат, хлорид, бромид, дигидрофосфат кальция; в качестве соединений фосфора - NH4H2PO4, NH4H2PO3, NH4H2PO2, Н3РO4, Н3РO2, (СН3О)3Р, (СН2Н5O)зР, (СН3)2СHO3Р, (СН3)(CH2)3О5P, (С6Н5)3Р, (С2Н2O)2 РОH, (С6Н5)3РО. В качестве органических растворителей - низкие спирты C1-C5, включая двухатомные, трехатомные, оксиалканомы, диалкилкетоны, оксикетоны, карбоновые кислоты, диметилацетамид и 2-этоксиэтилацетат. Иногда используют способ, отличающийся от предыдущих тем, что органический растворитель не отжигают, а проводят гидролиз смеси растворов фосфорной кислоты и этилата кальция, добавляя воду или водный раствор аммиака. ГА, выпавший в осадок, отделяют фильтрованием и сушат в вакуумной сушилке. 3. Твердофазный синтез. Твердофазный синтез заключается в термообработке на воздухе или в инертной атмосфере тщательно измельченных смесей, состоящих из солей, содержащих кальций, фосфор и улетучивающиеся при отжиге компоненты, которые не входят в состав конечного продукта. Это могут быть различные комбинации из фосфатов кальция, сложных оксидов и т. д. 4. Гидротермальный синтез, использующий процессы, происходящие в растворах при больших величинах температуры и давления. Обычно в качестве исходного сырья применяют как ранее синтезированный ГА, так и смеси, содержащие исходные вещества для синтеза ГА. В результате гидротермального синтеза получают стехиометрический, чистый, кристаллический ГА с размерами кристаллов до 3,5 мм. Итак, для получения аморфного ГА с размером частиц порядка 350-600


Формула изобретения
1. Аморфный, карбонированный и фторированный гидроксиапатит для зубных паст, включающий синтезированный неорганический материал со структурой гидроксиапатита, отличающийся тем, что он дополнительно содержит карбонатные группы и фторгруппы в соответствии с формулой Са10(РО4)6(ОН)2-x-y(CО3)x/2Fy, где x= 0,01-0,3; y= 0,01-0,4. 2. Способ получения карбонированного и фторированного гидроксиапатита, включающий введение водного раствора ортофосфорной кислоты в водную суспензию гидроксида кальция при перемешивании, отличающийся тем, что одновременно с введением ортофосфорной кислоты осуществляют введение фтористоводородной кислоты и кислого углекислого кальция при 8-10oС в инертной атмосфере до достижения в смеси рН 7,2-7,5, причем вышеуказанные компоненты для получения 1 кг продукта берут в следующих соотношениях по массе, г: Оксид кальция - 480 Ортофосфорная кислота - 576Кислый углекислый кальций - 0,3-12,0
Фтористый водород - 0,2-8,0
РИСУНКИ
Рисунок 1