Плазменный эмиттер ионов
Использование: при получении плазмы и генерации ионных пучков с большим поперечным сечением. Сущность изобретения: в системе, содержащей полый анод и торцевые катоды, в одном из которых выполнено эмиссионное окно, один из торцевых катодов выполнен из кольца и центрального диска, диаметр которого d удовлетворяет следующему условию: d < D-RL, где D - диаметр анода, RL - Ларморовский радиус для электронов, стартующих с поверхности кольца, причем напряжение U1 между анодом и центральным диском меньше, чем напряжение U2 между анодом и кольцом, и составляет для различных разрядных условий U1= (0,1-0,6)U2. В анодную полость напускается газ, и при приложении напряжения зажигается разряд, из плазмы которого через эмиссионное окно производится отбор ионов. Техническим результатом изобретения является получение в Пеннинговской газоразрядной системе однородной плазмы, что обеспечит возможность ее использования для получения пучка с большим поперечным сечением. 1 ил.
Изобретение относится к технике получения плазмы и генерации ионных пучков с большим поперечным сечением.
Газоразрядная Пеннинговская система [1] , состоящая из полого анода и торцевых катодов и находящаяся в магнитном поле, создаваемом соленоидом или постоянными магнитами, обеспечивает горение разряда при пониженных давлениях, что делает возможным ее использование при разработке ионных источников. Однако значительная пространственная неоднородность плазмы, генерируемой в этой системе, затрудняет ее использование для получения пучков большого сечения. Как правило, эту систему используют для получения узких сфокусированных пучков, извлекаемых через центральное эмиссионное отверстие в одном из катодов, так как радиальное распределение концентрации плазмы имеет резкий максимум в центре системы. Известный плазменный эмиттер такого типа содержит полый анод и два торцевых катода, в центре одного из которых выполнено эмиссионное отверстие, через которое извлекается ионный пучок [2]. Задачей изобретения является получение в Пеннинговской системе однородной плазмы, что обеспечит возможность ее использования для получения пучка с большим поперечным сечением. Для этого в плазменном эмиттере ионов, содержащем полый анод и торцевые катоды, один из катодов был выполнен из двух частей - центрального диска и периферийного кольца, причем напряжение между анодом и диском было меньше, чем напряжение между анодом и кольцом. В этом случае электроны, стартующие с поверхности диска, приобретали в области катодного падения потенциала меньшую энергию, и интенсивность ионизационных процессов в центральной части системы уменьшалась. В результате резконеоднородное распределение концентрации плазмы с максимумом в центре трансформировалось к однородному. Величина напряжения U1 между анодом и диском зависела от диаметра диска, величины магнитного поля, а также от рода и давления рабочего газа и составляла в различных разрядных условиях U1 = (0,1-0,6)U2, (1) где U2 - напряжение между анодом и кольцом. Диаметр диска d мог варьироваться в широких пределах, что не препятствовало достижению нужного эффекта, однако было необходимо выполнение следующего условия: d < D - RL, (2) где D - диаметр анода, RL - Ларморовский радиус для электронов, стартующих с поверхности кольца, определяемый следующим соотношением:
Формула изобретения
Плазменный эмиттер ионов, содержащий полый анод и торцевые катоды, в одном из которых выполнено эмиссионное окно, отличающийся тем, что один из торцевых катодов выполнен из кольца и центрального диска, диаметр которого d удовлетворяет следующему условию: d < D - RL,где D - диаметр анода;
RL - Ларморовский радиус для электронов, стартующих с поверхности кольца,
причем напряжение U1 между анодом и центральным диском меньше, чем напряжение U2 между анодом и кольцом, и составляет для различных разрядных условий
U1 = (0,1 - 0,6)U2.
РИСУНКИ
Рисунок 1