Фазовый способ пеленгации и фазовый пеленгатор для его осуществления
Изобретение относится к радионавигации, радионавигации и может быть использовано для определения местоположения и движения источников излучения сложных сигналов. Техническим результатом изобретения является повышение помехоустойчивости и точности фазовой пеленгации излучателя путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Предлагаемый способ может быть реализован фазовым пеленгатором, который содержит приемные антенны, усилители высокой частоты, первый гетеродин, смесители, усилители первой промежуточной частоты, второй гетеродин, усилитель второй промежуточной частоты, перемножители, узкополосные фильтры, частотомеры, вычислительный блок, блок регистрации, сумматоры, фазоинвертор, фазовращатели на +90o, амплитудный детектор и ключ. 2 с.п. ф-лы, 4 ил.
Изобретение относится к радиолокации и может быть использовано для определения местоположения и движения источников излучения сложных сигналов.
Известны фазовые способы пеленгации и фазовые пеленгаторы (патенты РФ NN 2003131, 2006872, 2010258, 2012010, 2134429, 2155352; Космические траекторные измерения. Под общей редакцией П.А. Агаджанова и др. М.: Сов. Радио, 1969, с. 244-245; И.Е. Кинкулькин и др. Фазовый метод определения координат. М.: Сов. Радио, 1979 и другие). Базовым способом следует считать "Фазовый способ пеленгации" (патент РФ N 2155352, G 01 S 3/46, 1999), который обеспечивает определение дальности D, угловых координат


























где Un,



2. Сдвигают его по фазе на +180o

0


u1(t) = U1cos[(






u2(t) = U2cos[(






u3(t) = U3cos[(






u4(t) = U4cos[(






u5(t) = U5cos[(






0


где U1-U5 - амплитуды сигналов;














5. Преобразуют их по частоте и выделяют напряжения первой промежуточной частоты:





0


где





K1 - коэффициент передачи преобразователя частоты;



7. Используют его для преобразования по частоте принимаемого сигнала на несущей частоте. u1(t) = U1









8. Выделяют напряжение первой промежуточной частоты

0



0






где

11. Полученное суммарное напряжение первой промежуточной частоты U


0


гдe

12. Выделяют гармоническое напряжение на частоте первого гетеродина

0



14. В измерительном канале напряжение u


где


и выделяют напряжение второй промежуточной частоты:

где



15. Перемножают напряжение второй промежуточной частоты






0


где




d, 2d - измерительные базы;












0


где





Выразив sin




где D - дальность до источника излучения сигнала. Вышеприведенные выражения можно записать в приближенном виде:


Значение разности разностей фаз в приближенном виде выглядит следующим образом:

22. Искомую дальность до источника излучения сигнала оценивают по следующей формуле:

23. По измеренным значениям азимута



где c - скорость света;
V - полная скорость движения источника излучения сигнала;



то выражение для несущей частоты можно записать в виде

Ограничиваясь первыми слагаемыми в правой части последнего равенства, получим

где Fg - доплеровское смещение частоты. Замена точного соотношения приближенным обуславливает методическую погрешность измерения радиальной скорости. Для измерения радиальной скорости излучателя в измерительном канале осуществляется двойное преобразование принимаемого сигнала с использованием двух эталонных частот 1, f2 и частоты подставки F0, которую вводят для определения знака доплеровского смещения Fg. При этом напряжение первой промежуточной частоты


где f1 - частота опорного сигнала, участвующего в первом преобразовании частоты принимаемого сигнала. Опорный сигнал, участвующий во втором преобразовании частоты принимаемого сигнала, имеет частоту
f2 = f0 - f1 - F0. После второго преобразования частоты принимаемого сигнала формируются колебания частоты
fизм =



От производных



где




Таким образом, для измерения угловых скоростей источника излучения сигнала, кроме разности доплеровских частот, необходимо измерять и направляющие конусы в азимутальной и угломестной плоскостях. По найденным значениям угловых скоростей можно определить тангенциальные составляющие вектора скорости источника излучения сигнала:


26. Модуль вектора скорости источника излучения сигнала

находится как результат измерения шести радионавигационных параметров: трех координат



Предлагаемый фазовый способ пеленгации может быть реализован фазовым пеленгатором, структурная схема которого представлена на фиг. 1. Взаимное расположение приемных антенн изображено на фиг. 2 и 3. Частотная диаграмма, поясняющая принцип образования дополнительных каналов, представлена на фиг. 4. Фазовый пеленгатор содержит приемные антенны 1-5, усилители 6-10 высокой частоты, первый гетеродин 11, смесители 12-16, 23, 51, 53, 60, усилители 17-21, 52, 61 первой промежуточной частоты, второй гетеродин 22, усилитель 24 второй промежуточной частоты, перемножители 25-29, 44, 45, 64, узкополосные фильтры 30-34, 46, 47, 54, 56, 65, фазометры 35-40, частотомеры 41, 48, 49, 55, вычислительный блок 42, блок 43 регистрации, сумматоры 58, 63, фазоинвертор 57, фазовращатели 59 и 62 на +90, амплитудный детектор 66 и ключ 67. Измерительный канал состоит из последовательно включенных антенн 1, усилителя 6 высокой частоты, узкополосного фильтра 56, фазоинвертора 57, сумматора 58, второй вход которого соединен с выходом усилителя 6 высокой частоты, смесителя 12, второй вход которого соединен с первым выходом первого гетеродина 11, усилителя 17 первой промежуточной частоты, сумматора 63, перемножителя 64, второй вход которого соединен с выходом сумматора 58, узкополосного фильтра 65, амплитудного детектора 66, ключа 67, второй вход которого соединен с выходом сумматора 63, смесителя 23, второй вход которого соединен с выходом гетеродина 22, усилителя 24 второй промежуточной частоты и частотомера 41. Каждый пеленгационный канал состоит из последовательно включенных антенн 2 (3, 4, 5), усилителя 7 (8, 9, 10) высокой частоты, смесителя 13 (14, 15, 16), второй вход которого соединен с выходом гетеродина 11, усилителя 18 (19, 20, 21) первой промежуточной частоты, перемножителя 25 (26, 27, 28), второй вход которого соединен с выходом усилителя 24 второй промежуточной частоты, узкополосного фильтра 30 (31, 32, 33) и фазометра 35 (36, 37, 38), второй вход которого соединен с выходом гетеродина 22. К выходу усилителя 7 высокой частоты последовательно подключены перемножитель 29, второй вход которого соединен с выходом усилителя 19, узкополосный фильтр 34, фазометр 39, второй вход которого соединен с выходом гетеродина 11, фазометр 40, второй вход которого соединен с выходом фазометра 35, вычислительный блок 42, второй вход которого соединен с выходом фазометра 39, а третий вход соединен с выходом частотомера 41, и блок регистрации 43, второй, третий, четвертый и пятый входы которого соединены с выходами фазометров 35-38 соответственно. К выходу усилителя 17 первой промежуточной частоты последовательно подключены перемножитель 44, второй вход которого соединен с выходом усилителя 19 первой промежуточной частоты, узкополосный фильтр 46 и частотомер 48, выход которого соединен с четвертым входом вычислительного блока 42 и шестым входом блока регистрации 43. К выходу усилителя 17 первой промежуточной частоты последовательно подключены перемножитель 45, второй вход которого соединен с выходом усилителя 21 первой промежуточной частоты, узкополосный фильтр 47 и частотомер 49, выход которого соединен с пятым входом вычислительного блока 42 и с седьмым входом блока регистрации 43. К выходу усилителя 6 высокой частоты последовательно подключены смеситель 51, второй вход которого соединен с первым выходом блока 50 эталонных частот, усилитель 52 первой промежуточной частоты, смеситель 53, второй вход которого соединен со вторым выходом блока 50 эталонных частот, узкополосный фильтр 54 и частотомер 55, выход которого подключен к шестому входу вычислительного блока 42 и восьмому входу блока 43 регистрации. Фазовый пеленгатор работает следующим образом. Принимаемые ФМн-сигналы с выходов антенн 1-5 через усилители 6-10 высокой частоты поступают на первые входы смесителей 12-16 соответственно, на вторые входы которых подается напряжение первого гетеродина


На выходах смесителей 12-16, 60 образуются напряжения комбинационных частот. Усилителями 17-21, 61 выделяются напряжения

















u3(t) = U3





то в измерительном канале он с помощью смесителей 12 и 60 преобразуется по частоте. Усилителями 12 и 61 выделяются следующие напряжения:


0


где



Напряжение









то смесителями 12 и 60 он преобразуется в следующие напряжения:


где



Напряжение


Напряжения


где

Это напряжение поступает на второй вход перемножителя 64, на первый вход которого подается принимаемый ложный сигнал (помеха)


где

которое не попадает в полосу пропускания узкополосного фильтра 65. Ключ 67 не открывается и ложный сигнал (помеха), принимаемый по второму комбинационному каналу на частоте












По измеренным значениям азимута




которое поступает на первый вход смесителя 53. а второй вход смесителя 53 подается опорный сигнал, частота которого определяется выражением
f2 = f0 - f1 - F0. где F0- частота подставки, которая вводится для определения знака доплеровского смещения Fg. На выходе смесителя 53 формируются колебания частоты
fизм =

которые выделяются узкополосным фильтром 54, измеряются частотомером 55 и поступают в вычислительный блок 42 и блок 43 регистрации. По величине и знаку доплеровского смещения оценивают величину и направление радиальной скорости источника излучения сигнала. Для измерения угловых скоростей излучателя по азимуту





Указанные разности доплеровских частот измеряются частотомерами 48 и 49 соответственно, поступают в вычислительный блок 42 и фиксируются блоком 43 регистрации. В вычислительном блоке 42 определяются тангенциальные составляющие вектора скорости излучателя:

и модуль вектора скорости излучателя

которые также фиксируются блоком 43 регистрации. Таким образом, предлагаемый способ по сравнению с базовым обеспечивает повышение помехозащищенности и точности фазовой пеленгации излучателя. Это достигается подавлением ложных сигналов (помех), принимаемых по каналу прямого прохождения на частоте


Формула изобретения

где

при этом меньшие базы d образуют грубые, но однозначные шкалы отсчета углов, а большие базы 2d образуют точные, но неоднозначные шкалы отсчета углов, преобразовании принимаемых сигналов по частоте, выделении напряжений первой промежуточной частоты, повторном преобразовании по частоте напряжения первой промежуточной частоты измерительного канала, выделении напряжения второй промежуточной частоты, перемножении его с напряжениями первой промежуточной частоты пеленгационных каналов, выделении из полученных напряжений гармонических колебаний на частоте второго гетеродина с сохранением фазовых соотношений, измерении разности фаз между гармоническими колебаниями и напряжением второго гетеродина и оценивании по ним значений азимута и угла места источника излучения сигнала, перемножении принимаемого сигнала первого пеленгационного канала с напряжением первой промежуточной частоты второго пеленгационного канала в азимутальной плоскости, выделении из полученного напряжения гармонического колебания на частоте первого гетеродина с сохранением фазовых соотношений, измерении несущей частоты принимаемого сигнала, угла визирования и разности разностей фаз между первым пеленгационным и измерительным каналами, а также между вторым и первым пеленгационными каналами в азимутальной плоскости и оценивании по их значениям дальности до источника излучения сигнала, определении по измеренным значениям азимута, угла места и дальности местоположения источника излучения сигнала, перемножении напряжения первой промежуточной частоты измерительного канала с напряжениями первой промежуточной частоты второго и четвертого пеленгационных каналов, расположенных в азимутальной и угломестной плоскостях соответственно, выделении из полученных напряжений гармонических колебаний с частотами, равными разности доплеровских частот, оценивании по ним значений угловых скоростей источника излучения сигнала по азимуту и углу места, осуществления в измерительном канале двойного преобразования по частоте принимаемого сигнала с использованием двух эталонных частот и частоты подставки, которую вводят для определения знака доплеровского смещения, выделении гармонического колебания с доплеровским смещением, измерении его частоты и оценивании по величине и знаку доплеровского смещения величины и направления радиальной скорости источника излучения сигнала, определении по измеренным значениям дальности, радиальной скорости и угловых скоростей по азимуту и углу места модуля вектора скорости источника излучения сигнала, отличающийся тем, что в измерительном канале выделяют ложный сигнал, принимаемый на первой промежуточной частоте, сдвигают его по фазе на +180° и суммируют с исходным ложным сигналом, тем самым подавляя его, напряжение первого гетеродина сдвигают по фазе на +90°, используют его для преобразования по частоте принимаемого сигнала на несущей частоте, выделяют напряжение первой промежуточной частоты, сдвигают его по фазе на +90° и суммируют с исходным напряжением первой промежуточной частоты, полученное суммарное напряжение первой промежуточной частоты перемножают с принимаемым сигналом на несущей частоте, выделяют гармоническое напряжение на частоте первого гетеродина, детектируют его и используют для разрешения повторного преобразования по частоте суммарного напряжения первой промежуточной частоты. 2. Фазовый пеленгатор, содержащий измерительный и четыре пеленгационных канала, при этом измерительный канал состоит из последовательно включенных антенны и усилителя высокой частоты, последовательно включенных первого смесителя, второй вход которого соединен с первым выходом первого гетеродина, и первого усилителя первой промежуточной частоты, последовательно включенных шестого смесителя, второй вход которого соединен с выходом второго гетеродина, усилителя второй промежуточной частоты и первого частотомера, каждый пеленгационный канал состоит из последовательно включенных антенны, усилителя высокой частоты, смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, перемножителя, второй вход которого соединен с выходом усилителя второй промежуточной частоты измерительного канала, узкополосного фильтра и фазометра, второй вход которого соединен с выходом второго гетеродина, последовательно подключенные к выходу усилителя высокой частоты первого пеленгационного канала пятый перемножитель, второй вход которого соединен с выходом усилителя первой промежуточной частоты второго пеленгационного канала, пятый узкополосный фильтр, пятый фазометр, второй вход которого соединен с выходом первого гетеродина, шестой фазометр, второй вход которого соединен с выходом первого фазометра, вычислительный блок, второй вход которого соединен с выходом пятого фазометра, а третий вход соединен с выходом первого частотомера и блок регистрации, второй, третий, четвертый и пятый входы которого соединены с выходами первого, второго, третьего и четвертого фазометров, соответственно, последовательно подключенные к выходу усилителя первой промежуточной частоты измерительного канала шестой перемножитель, второй вход которого соединен с выходом усилителя первой промежуточной частоты второго пеленгационного канала, шестой узкополосный фильтр и второй частотомер, выход которого подключен к четвертому входу вычислительного блока и шестому входу блока регистрации, последовательно подключенные к выходу усилителя первой промежуточной частоты измерительного канала седьмой перемножитель, второй вход которого соединен с выходом усилителя первой промежуточной частоты четвертого пеленгационного канала, седьмой узкополосный фильтр и третий частотомер, выход которого подключен к пятому входу вычислительного блока и к седьмому входу блока регистрации, последовательно подключенные к выходу усилителя высокой частоты измерительного канала седьмой смеситель, второй вход которого соединен с первым выходом блока эталонных частот, шестой усилитель первой промежуточной частоты, восьмой смеситель, второй вход которого соединен с вторым выходом блока эталонных частот, восьмой узкополосный фильтр и четвертый частотомер, выход которого подключен к шестому входу вычислительного блока и к восьмому входу блока регистрации, отличающийся тем, что он снабжен девятым и десятым узкополосным фильтрами, фазинвертером, двумя сумматорами, девятым смесителем, седьмым усилителем первой промежуточной частоты, двумя фазовращателями на +90°, восьмым перемножителем, амплитудным детектором и ключом, причем к выходу усилителя высокой частоты измерительного канала последовательно подключены девятый узкополосный фильтр, фазоинвертор и первый сумматор, второй вход которого соединен с выходом усилителя высокой частоты измерительного канала, а выход подключен к первому входу первого смесителя измерительного канала, к выходу первого сумматора последовательно подключены девятый смеситель, второй вход которого соединен через первый фазовращатель на +90° с вторым выходом первого гетеродина, седьмой усилитель первой промежуточной частоты, второй фазовращатель на +90°, второй сумматор, второй вход которого соединен с выходом усилителя первой промежуточной частоты измерительного канала, восьмой перемножитель, второй вход которого соединен с выходом первого сумматора, десятый узкополосный фильтр, амплитудный детектор и ключ, второй вход которого соединен с выходом второго сумматора, а выход подключен к первому входу шестого смесителя измерительного канала.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4