Фазовый способ пеленгации и фазовый пеленгатор для его осуществления
Изобретение относится к радиолокации, радионавигации и может быть использовано для определения местоположения и движения источников излучения сложных сигналов. Технический результат - расширение функциональных возможностей базового способа путем измерения радиальной скорости D и угловых скоростей источника излучения сигнала по азимуту и углу места
. Предлагаемый способ может быть реализован фазовым пеленгатором, который содержит антенны 1-5, усилители 6-10 высокой частоты, первый гетеродин 11, смесители 12-16, 23, 51, 53, усилители 17-21, 52 первой промежуточной частоты, перемножители 25-29, 44, 45, узкополосные фильтры 30-34, 46, 47, 54, фазометры 35-40, частотомеры 41, 48, 49, 55, вычислительный блок 42 и блок 43 регистрации, 2 с. п. ф-лы, 3 ил.
Изобретение относится к радиолокации, радионавигации и может быть использовано для определения местоположения и движения источников излучения сложных сигналов.
Известны фазовые способы пеленгации и фазовые пеленгаторы (патенты РФ NN 2003131, 2006872, 2010258, 2012010, 2134429; Космические траекторные измерения. Под общей редакцией ПА. Агаджанова и др. М.: Сов. радио, 1969, с. 244-245; И.Е.Кинкулькин и др. Фазовый метод определения координат. М.: Сов. радио, 1979 и другие). Базовым способом следует считать "Фазовый способ пеленгации" (патент РФ N2134429, G 01 S 3/00,1997), который обеспечивает измерение угловых координат





























2. Преобразуют их по частоте с использованием напряжения первого гетеродина:
Ur1(t) = Ur1




где Ur1,


и выделяют напряжение первой промежуточной частоты:

0


где

K1 - коэффициент передачи преобразователей частоты;



образуя тем самым один измерительный и четыре пеленгационных канала, по два на каждую плоскость. 3. В измерительном канале напряжение Uпр1(t) первой промежуточной частоты второй раз преобразуют по частоте с использованием напряжения второго гетеродина:
ur2(t) = Ur2




где Ur2,


и выделяют напряжение второй промежуточной частоты:
uпр6(t) = Uпр6








где







4. Перемножают напряжение второй промежуточной частоты Uпр6(t) измерительного канала с напряжениями Uпр2(t)-Uпр5(t) первой промежуточной частоты пеленгационных каналов. 5. Из полученных напряжений выделяют гармонические колебания на частоте второго гетеродина с сохранением фазовых соотношений:

0


где

K2 - коэффициент передачи перемножителей;

d, 2d - измерительные базы;









u10(t) = U10








где


9. Измеряют разность фаз



Выразив sin




где D - дальность до источника излучения сигнала. Выше приведенные выражения можно записать в приближенном виде:


Значение разности разностей фаз в приближенном виде выглядит следующим образом:

11. Искомую дальность до источника излучения сигнала оценивают по следующей формуле:

12. По измеренным значениям азимута



где с - скорость света;
V - полная скорость движения источника сигнала;



то выражение для несущей частоты можно записать в виде

Ограничиваясь первыми слагаемыми в первой части последнего равенства, получаем

где Fg - доплеровское смещение частоты. Замена точного соотношения приближенным обуславливает методическую погрешность измерения радиальной скорости. Для измерения радиальной скорости излучателя в измерительном канале осуществляют двойное преобразование принимаемого сигнала с использованием двух эталонных частот f1, f2 и частоты подставки F0, которую вводят для определения знака доплеровского смещения Fg. При этом напряжение первой промежуточной частоты fПЧ1, на которой производится усиление принимаемого сигнала, определяется разностью
fПЧ1=fс-f1=f0+Fg-f1,
где f1 - частота опорного сигнала, участвующего в первом преобразовании частоты принимаемого сигнала. Опорный сигнал, участвующий во втором преобразовании частоты принимаемого сигнала, имеет частоту
f2=f0-f1-F0. После второго преобразования частоты принимаемого сигнала формируются колебания частоты
fИЗМ = fПЧ1-f2 = f0 + Fg - f1 -f0+F0 = Fg+F0. В зависимости от того, fИЗМ > F0 или fИЗМ < F0, определяют знак доплеровского смещения, а следовательно, и направление радиальной скорости. 14. Измеряют угловые скорости излучателя. Указанные измерения в двух плоскостях основаны на сравнении доплеровских смещений в двух системах разнесенных антенн, базы которых ориентированы в пространстве под углом 90o (фиг. 2). При этом измеряются производные двух направляющих конусов:

От производных



где




Таким образом, для измерения угловых скоростей источника излучения сигнала, кроме разностей доплеровских частот, необходимо измерить направляющие косинусы в азимутальной и угломерной плоскостях. По найденным значениям угловых скоростей определяют тангенциальные составляющие вектора скорости источника излучения сигнала:

15. Модуль вектора скорости источника излучения сигнала

находят как результат измерения шести радионавигационных параметров: трех координат



Предлагаемый фазовый способ пеленгации может быть реализован фазовым пеленгатором, структурная схема которого представлена на фиг. 1. Взаимное расположение приемных антенн изображено на фиг. 2 и 3. Фазовый пеленгатор содержит приемные антенны 1 - 5, усилители 6 - 10 высокой частоты, первый гетеродин 11, смесители 12 - 16, 23, 51, 53, усилители 17 - 21, 52 первой промежуточной частоты, второй гетеродин 22, усилитель 24 второй промежуточной частоты, перемножители 25 - 28, 29, 44, 45, узкополосные фильтры 30 - 34, 46, 47, 54, фазометры 35 - 40, частотомеры 41, 48, 49, 55, вычислительный блок 42, блок 43 регистрации. Измерительный канал состоит из последовательно включенных антенны 1 усилителя 6 высокой частоты, смесителя 12, второй вход которого соединен с выходом гетеродина 11, усилителя 17 первой промежуточной частоты и частотомера 41. Каждый пеленгационный канал состоит из последовательно включенных антенн 2 (3, 4, 5), усилителя 7(8, 9, 10) высокой частоты, смесителя 13 (14, 15, 16), второй вход которого соединен с выходом гетеродина 11, усилителя 18 (19, 20, 21) первой промежуточной частоты, перемножителя 25 (26, 27, 28), второй вход которого соединен с выходом усилителя 24 второй промежуточной частоты, узкополосного фильтра 30 (31, 32, 33) и фазометра 35 (36, 37, 38), второй вход которого соединен с выходом гетеродина 22. К выходу усилителя 7 высокой частоты последовательно подключены перемножитель 29, второй вход которого соединен с выходом усилителя 19, узкополосный фильтр 34, фазометр 39, второй вход которого соединен с выходом гетеродина 11, фазометр 40, второй вход которого соединен с выходом фазометра 35, вычислительный блок 42, второй вход которого соединен с выходом фазометра 39, а третий вход соединен с выходом частотомера 41, и блок регистрации 43, второй, третий, четвертый и пятый входы которого соединены с выходами фазометров 35-38 соответственно. К выходу усилителя 17 первой промежуточной частоты последовательно подключены перемножитель 44, второй вход которого соединен с выходом усилителя 19 первой промежуточной частоты, узкополосный фильтр 46 и частотомер 48, выход которого соединен с четвертым входом вычислительного блока 42 и шестым входом блока регистрации 43. К выходу усилителя 17 первой промежуточной частоты последовательно подключены перемножитель 45, второй вход которого соединен с выходом усилителя 21 первой промежуточной частоты, узкополосный фильтр 47 и частотомер 49, выход которого соединен с пятым входом вычислительного блока 42 и с седьмым входом блока 43 регистрации. К выходу усилителя 6 высокой частоты последовательно подключены смеситель 51, второй вход которого соединен с первым выходом блока 50 эталонных частот, усилитель 52 первой промежуточной частоты, смеситель 53, второй вход которого соединен со вторым выходом блока 50 эталонных частот, узкополосный фильтр 54 и частотомер 55, выход которого подключен к шестому входу вычислительного блока 42 и восьмому входу блока 43 регистрации. Фазовый пеленгатор работает следующим образом. Принимаемые ФМн-сигналы с выходов антенн 1 - 5 через усилители 6-10 высокой частоты поступают на первые входы смесителей 12-16 соответственно, на вторые входы которых подается напряжение первого гетеродина. На выходах смесителей 12-16 образуются напряжения комбинационных частот. Усилителями 17-21 выделяются напряжения Uпр1(t)-Uпр5(t) только первой промежуточной частоты. Напряжение Uпр1(t) с выхода усилителя 17 первой промежуточной частоты поступает на первый вход смесителя 23, на второй вход которого подается напряжение Uг2(t) гетеродина. На выходе смесителя 23 образуются напряжения комбинационных частот. Усилителем 24 выделяется напряжение только второй промежуточной частоты, которое подается на вторые входы перемножителей 25 - 28, на первые входы которых поступают напряжения Uпр2(t)-Uпр5(t) первой промежуточной частоты. Из полученных напряжений узкополосными фильтрами 30-33 выделяются гармонические колебания U6(t)-U9(t), которые поступают на первые входы фазометров 35-38, на вторые входы которых подается напряжение Uг2(t) гетеродина 22. Измеренные фазовые сдвиги



















По измеренным значениям азимута



fпр1 - fс - f1 = f0 + Fg - f1,
которое поступает на первый вход смесителя 53. На второй вход смесителя 53 подается оперный сигнал, частота которого определяется выражением
f2=f0 - f1-F0,
где F0 - частота подставки, которую выводят для определения знака доплеровского смещения Fg. На выходе смесителя 53 формируются колебания частоты
fИЗМ = fПЧ1 - f2 = f0 + Fg - f1 - f0 + f1 + F0 = Fg + F0,
которые выделяются узкополосным фильтром 54, измеряются частотомером 55 и поступает в вычислительный блок 42 и блок 43 регистрации. По величине и знаку доплеровского смещения оценивают величину и направление радиальной скорости источника излучения сигнала. Для измерения угловых скоростей излучателя по азимуту




Указанные разности доплеровских частот измеряются частотомерами 48 и 49 соответственно, поступают в вычислительный блок 42 и фиксируются блоком 43 регистрации. В вычислительном блоке 42 определяются тангенциальные составляющие вектора скорости излучателя

и модуль вектора скорости излучателя

которые также фиксируются блоком 43 регистрации. Таким образом, предлагаемый способ по сравнению с базовым обеспечивает определение не только дальности D и угловых координат









Формула изобретения

где

при этом меньше базы d образуют грубые, но однозначные шкалы отсчета углов, а большие базы 2d образуют точные, но неоднозначные шкалы отсчета углов, преобразовании принимаемых сигналов по частоте, выделении напряжений первой промежуточной частоты, повторном преобразовании по частоте напряжения первой промежуточной частоты измерительного канала, выделении напряжения второй промежуточной частоты, перемножении его с напряжениями первой промежуточной частоты пеленгационных каналов, выделении из полученных напряжений гармонических колебаний на частоте второго гетеродина с сохранением фазовых соотношений, измерении разности фаз между гармоническими колебаниями и напряжением второго гетеродина и оценивании по ним значений азимута и угла места источника излучения сигнала, перемножения принимаемого сигнала первого пеленгационного канала с напряжением первой промежуточной частоты второго пеленгационного канала в азимутальной плоскости, выделении из полученного напряжения гармонического колебания на частоте первого гетеродина с сохранением фазовых соотношений, измерении несущей частоты принимаемого сигнала, угла визирования и разности разностей фаз между первым пеленгационным и измерительным каналами, а также между вторым и первым пеленгационными каналами в азимутальной плоскости и оценивании по их значениям дальности до источника излучения сигнала, определении по измеренным значениям азимута, угла места и дальности местоположения источника излучения сигнала, отличающийся тем, что перемножают напряжение первой промежуточной частоты измерительного канала с напряжениями первой промежуточной частоты второго и четвертого пеленгационных каналов, расположенных в азимутальной и угломестной плоскостях соответственно, выделяют из полученных напряжений гармонические колебания с частотами, равными разности доплеровских частот, и по ним оценивают значения угловых скоростей источника излучения сигнала по азимуту и углу места, в измерительном канале осуществляют двойное преобразование по частоте принимаемого сигнала с использованием двух эталонных частот и частоты подставки, которую вводят для определения знака доплеровского смещения, выделяют гармоническое колебание с доплеровским смещением, измеряют его частоту и по величине и знаку доплеровского смещения оценивают величину и направление радиальной скорости источника излучения сигнала, по измеренным значениям дальности, радиальной скорости и угловых скоростей по азимуту и углу места определяют модуль вектора скорости источника излучения сигнала. 2. Фазовый пеленгатор, содержащий измерительный и четыре пеленгационных канала, при этом измерительный канал состоит из последовательно включенных антенны, усилителя высокой частоты, смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, смесителя, второй вход которого соединен с выходом второго гетеродина, усилителя второй промежуточной частоты и первого частотомера, каждый пеленгационный канал состоит из последовательно включенных антенны, усилителя высокой частоты, смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, перемножителя, второй вход которого соединен с выходом усилителя второй промежуточной частоты, узкополосного фильтра и фазометра, последовательно подключенные к выходу усилителя высокой частоты первого пеленгационного канала, пятый перемножитель, второй вход которого соединен с выходом усилителя первой промежуточной частоты второго пеленгационного канала, пятый узкополосной фильтр, пятый фазометр, второй вход которого соединен с выходом первого гетеродина, шестой фазометр, второй вход которого соединен с выходом первого фазометра, вычислительный блок, второй вход которого соединен с выходом пятого фазометра, а третий вход соединен с выходом первого частотомера, и блок регистрации, второй, третий, четвертый и пятый входы которого соединены с выходами первого, второго, третьего и четвертого фазометров соответственно, отличающийся тем, что он снабжен шестым и седьмым перемножителями, шестым, седьмым и восьмым узкополосными фильтрами, вторым, третьим и четвертым частотомерами, блоком эталонный частот, седьмым и восьмым смесителями и шестым усилителем первой промежуточной частоты, причем к выходу усилителя первой промежуточной частоты измерительного канала последовательно подключены шестой перемножитель, второй вход которого соединен с выходом усилителя первой промежуточной частоты второго пеленгационного канала, шестой узкополосный фильтр и второй частотомер, выход которого подключен к четвертому входу вычислительного блока и шестому входу блока регистрации, к выходу усилителя первой промежуточной частоты измерительного канала последовательно подключены седьмой перемножитель, второй вход которого соединен с выходом усилителя первой промежуточной частоты четвертого пеленгационного канала, седьмой узкополосный фильтр и третий частотомер, выход которого подключен к пятому входу вычислительного блока и к седьмому выходу блока регистрации, к выходу усилителя высотой частоты измерительного канала последовательно подключены седьмой смеситель, второй вход которого соединен с первым выходом блока эталонных частот, шестой усилитель первой промежуточной частоты, восьмой смеситель, второй вход которого соединен с вторым выходом блока эталонных частот, восьмой узкополосной фильтр и четвертый частотомер, выход которого подключен к шестому входу вычислительного блока и к восьмому входу блока регистрации.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3