Способ получения радионуклида углерод-14
Изобретение относится к прикладной радиохимии и касается, в частности, производств по получению радиоактивного изотопа углерод-14, который широко применяется в виде меченых органических соединений, а также в источниках
-излучения. Сущность изобретения: смесь очищенных от примесей нитратов кальция и натрия расплавляют при 250-500°С, после охлаждения солевой расплав измельчают и загружают в контейнер. После облучения в нейтронном потоке крышку контейнера прокалывают и порциями подают через отверстия азотную кислоту для растворения облученного вещества, одновременно подогревая контейнер до 150-200°С. Образующиеся газообразные соединения углерода-14 периодически выдувают из контейнера и направляют на переработку. Преимуществами заявленного изобретения являются повышение выхода углерода-14 высокой изотопной чистоты, сокращение количества образующихся радиоактивных отходов, а также повышение технологичности процесса. 1 табл.
Изобретение относится к области прикладной радиохимии и касается, в частности, производств по получению радиоактивного изотопа углерода 14C, широко применяемого в виде меченых органических соединений, а также в источниках
-излучения.
107 Бк/ч или 1,7
103 Бк/(см3
ч). Пример N 2. Алюминиевые контейнеры диаметром 36 мм и длиной 102 мм (объем 100 см3) заполняли обезвоженным порошкообразным нитратом кальция (107 г). В процессе облучения должно было образоваться 6,8 мКи углерода-14 на 1 г азота, т.е. всего 120 мКи C-14 на контейнер. После облучения по 3 контейнера загружались в аппарат-растворитель, в него заливали 3,7 М раствор щелочи, нагревали до 75oC и выдерживали 1 час для разрушения алюминиевой оболочки контейнеров. Затем в аппарат заливали концентрированную азотную кислоту, и выделяющиеся газы сдували потоком азота в щелочные ловушки, из которых потом осаждали карбонат бария. Выход углерода-14 составил около 100 мКи или 4,2
103 Бк/(см3
ч), потери могли произойти за счет проскока через щелочные ловушки оксида углерода, метана и других летучих соединений углерода. В процессе такой переработки образовалось 7 л жидких радиоактивных отходов. Пример N 3. В алюминиевый контейнер объемом 1 л было загружено 1,6 кг смеси нитратов кальция и натрия (3:1), предварительно расплавленной при температуре 400oC, отлитой в виде моноблоков и разбитой на куски размером до 10 мм. После герметизации сваркой контейнер был поставлен на облучение в канал ядерного реактора. После окончания кампании контейнер был извлечен из реактора, в его крышке с помощью специального прокольного устройства были сделаны 2 отверстия, через которые произведена продувка внутренней полости контейнера потоком чистого азота. Затем в контейнер через отверстие, сообщающееся с трубкой, постепенно ввели 300 см3 5 М азотной кислоты. При этом дно контейнера подогревалось на электроплитке до температуры 150-200oC. Образующиеся при этом газы пропускали через поглотитель оксидов азота, узел дожига и щелочные ловушки. После окончания ввода кислоты по той же линии в течение 1 часа подавали поток чистого азота до прекращения выделения радиоактивных газов (контроль с помощью газового радиометра). Количество получаемого таким способом углерода-14 составляло 1,2
107 Бк/ч или 1,2
104 Бк/(см3
ч). Пример N 4. В алюминиевый контейнер объемом 1 л было загружено 1,5 кг дигидрата нитрата кальция, предварительно расплавленного при температуре 200oC, отлитой в виде моноблоков и разбитой на куски размером до 10 мм. После герметизации сваркой контейнер был поставлен на облучение в канал ядерного реактора. После окончания кампании контейнер был извлечен из реактора, в его крышке с помощью специального прокольного устройства были сделаны 2 отверстия, через которые произведена продувка внутренней полости контейнера потоком чистого азота. Затем в контейнер через отверстие, сообщающееся с трубкой, постепенно ввели 300 см3 5 М азотной кислоты. При этом дно контейнера подогревалось на электроплитке до температуры 150-200oC. Образующиеся при этом газы пропускали через поглотитель оксидов азота, узел дожига и щелочные ловушки. После окончания ввода кислоты по той же линии в течение 1 часа подавали поток чистого азота до прекращения выделения радиоактивных газов (контроль с помощью газового радиометра). Количество получаемого таким способом углерода-14 составляло 1
107 Бк/ч или 1
104 Бк/(см3
ч). Сравнительные характеристики выходов углерода-14 при различных способах его получения представлены в таблице. Заявленное изобретение позволяет повысить выход углерода-14 высокой изотопной чистоты, сократить количество образующихся радиоактивных отходов и повысить технологичность процесса. Использованная литература 1. Патент Российской Федерации RU N 2106032 МКИ. 6 G 21/06, 1/08 "Способ получения изотопа углерода-14". 2. Hata К., Shikata E., Amano H. Release of Carbon-14 from Neutron-Irradiated Aluminium Nitride in the Dry Procedure. - Journal of Nuclear Science and Technology, 1973, v.10, N 2, p. 89-94. 3. Патент Российской Федерации RU N 2084979 МКИ.6 G 21 G 1/06 "Способ выделения радионуклида углерод-14 из облученного нейтронами нитрида алюминия". 4. Е. Е. Кулиш. "Некоторые вопросы получения радиоактивных изотопов в ядерном реакторе". Получение изотопов. Мощные гамма-установки. Радиометрия и дозиметрия. - М: Изд-во АН СССР, 1958, с.23-25. Ближайший аналог.Формула изобретения
Способ получения радионуклида углерод-14 путем облучения обезвоженного нитрата кальция в металлическом контейнере нейтронами, последующего вскрытия контейнера, растворения облученного вещества в азотной кислоте и подачи извлеченных радиоактивных газообразных продуктов, содержащих углерод-14, в систему переработки, отличающийся тем, что нитрат кальция с добавкой нитрата натрия (10 - 50%) перед облучением расплавляют при 250 - 500°С и загружают в контейнер в виде кусков плавленого вещества, а извлечение углерода-14 проводят в самом контейнере, прокалывая его крышку и подавая в него через образованные отверстия порциями азотную кислоту, одновременно подогревая его до 150 - 200°С и периодически выдувая образующиеся продукты в систему переработки потоком газа, не содержащего соединений углерода.РИСУНКИ
Рисунок 1














