Способ извлечения брома из бромсодержащих растворов и установка для его осуществления
Изобретение относится к способу извлечения брома из природных вод, рассолов и технологических растворов, содержащих в своем составе бромид- и хлорид-ионы. Высокоминерализованный бромсодержащий рассол пропускают через анодную камеру двухкамерного электролизера, разделенного на анодную и катодную камеры анионообменной мембраной. Через катодную камеру пропускают раствор соляной кислоты, что позволяет получать хлор и избежать осадкообразования на катоде. Хлор, выделяющийся при электролизе, используют для окисления бромид-ионов. Поток рассола, проходящего через электролизер, вместе с анодным газом, содержащим бром и хлор, направляют в десорбер, где осуществляют смешивание его с потоком исходного рассола таким образом, чтобы обеспечить максимальную степень окисления бромид-ионов, содержащихся в рассоле. Установка для осуществления способа включает электролизер, десорбер и систему теплообменников, позволяющих использовать тепло, которое выделяется при электролизе и десорбции брома, для подогрева исходного рассола. Технический эффект -использование высокоминерализованных рассолов, содержащих ионы Ca и Mg, повышение рентабельности способа за счет использования хлора, содержащегося в исходном рассоле, и снижение затрат тепловой энергии для подогрева исходного рассола. 2 с. и 7 з.п.ф-лы, 5 ил.
Изобретение относится к способу извлечения брома из природных вод, рассолов и технологических растворов, содержащих в своем составе бромид- и хлорид-ионы.
Уровень техники. Известны решения по электросорбционному извлечению брома из океанской воды [1] с применением бромселективных электроуглей, которые используют в качестве электродов и в качестве адсорбентов. Целевым продуктом в описанном решении является бромид магния, образующийся в результате перемены полярности электродов и последующего взаимодействия гидроксида магния, образующегося в прикатодном объеме, с бромом после окисления бромид-иона на аноде. Недостатками способа являются применение специальных углей, поверхность которых модифицирована дорогостоящими металлами платиновой группы, а также невозможность использования для электролиза природных вод и рассолов, в которых содержатся высокие концентрации ионов кальция и других осадкообразующих металлов. Известен способ извлечения брома путем электрохимического окисления бромид- и хлорид-ионов, содержащихся в природных водах, например, в озерных и пластовых нефтяных водах, в бездиафрагменном электролизере [2]. В процессе электролиза в подкисленном электролите образуются свободный хлор и бром. Избыток хлора используют для окисления дополнительного количества бромид-ионов, для чего смешивают рассол, пропущенный через электролизер, и исходный бромсодержащий рассол. Недостатками способа являются использование только природных вод хлоридного натриевого или хлоридно-сульфатного типа, не содержащих щелочноземельных металлов, необходимость очистки от примесей кальция, в случае его присутствия в исходной воде, и, как следствие, использование реагентов на осаждение кальция, например серной кислоты, а также использование большого количества серной кислоты для подкисления растворов в процессе электролиза. Известен способ извлечения брома и получения бромистоводородной кислоты из бромидсодержащих растворов, включающий ввод предварительно подогретого до 50oC раствора в емкость для рециркуляции анолита (одновременно являющуюся десорбером), подачу раствора в анодную камеру электролитической ячейки, которая разделена катионообменной мембраной на две камеры анодную и катодную, вывод электролизата из анодной камеры с последующей подачей части электролизата в электрохимическую ячейку, вывод части потока из системы и отвод из десорбера бромсодержащего пара с последующей его конденсацией, сепарацией брома в разделительном сосуде и подачей его на склад. В катодную камеру подается раствор гидроксида щелочного металла, который циркулирует через емкость для циркуляции католита и обогащается им в процессе электролиза по крайней мере до 15 вес. % [3]. Для извлечения брома используются кислые растворы, содержащие HBr от 5 до 35% и pH от 2 до 6, через которые пропускается ток и в результате электролиза на аноде образуется элементарный бром. Электрохимический процесс мажет быть использован для растворов, содержащих одновременно HBr и MeBr, где Me - щелочной металл, а также для растворов, содержащих органику. Процесс осуществляют в мембранном электролизере при плотности тока до 4 кА/м2 (40 А/дм2) при температуре 40-80oC. Заявлены как оптимальные параметры: плотности тока 1,5-2,5 кА/м2 (15-20 А/дм2) и температура в интервале 45-65oC. Электролизер, имеет каркас с параллельно соединенными электролитическими ячейками, каждая из которых включает анод, катод, ионообменную мембрану, размещенную между анодом и катодом, систему каналов для подачи исходного раствора и католита равномерно по всей площади анода и катода, и систему каналов для вывода анолита и католита. Сборная электролитическая ячейка имеет внутренний цилиндрический электрод, который одной стороной обращен к аноду, другой к катоду. Между наружным и внутренним электродом имеется кольцевое пространство, обеспечивающее продольное прохождение электролита через ячейку. В качестве анода используются титан с покрытием, содержащим окись рутения или платину, а также графит. Толщина пространства между анодом и катодом не превышает 6 мм. Установка для получения брома включает источник исходного раствора, емкость для соляной кислоты, электролизер, емкость для католита, соединенную посредством трубопровода напрямую и через насос с электролизером, емкость для анолита (десорбер), конденсатор, имеющий охлаждающий и охлаждаемый контуры, сепаратор (разделительный сосуд), трубопроводы, соединяющие электролизер с десорбером, конденсатор с разделительным сосудом и десорбер с конденсатором. В качестве целевого продукта на установке получают бром или бромсодержащие растворы, которые используют для бромирования органики и получения HBr в качестве побочного продукта, а также для обработки воды. Недостатками способа являются использование в электролизере только кислых бромисто-водородных растворов, не содержащих примеси щелочноземельных металлов и магния, а также органических продуктов, требующих очистки с использованием ионообменных колонн. Способ в большей степени используется для растворов после бромирования органических веществ с начальным содержанием бромид-иона 8-25%, и органических веществ 0,2-10% при ограниченном присутствии других галогенидов, например хлора. Недостатками установки, предлагаемой для извлечения брома из бромсодержащих растворов, является невозможность ее использования для извлечения брома из рассолов, обогащенных хлором, содержание которого может достигать 9 молей/л (его количество в прототипе ограничивается 0,2-0,7 молей). Способ требует постоянных затрат тепла для подогрева исходного раствора, т.к. не решен вопрос рекуперации тепла. Недостатком электролитической ячейки (электролизера), входящей в состав установки, в которой реализуется способ, предлагаемый в прототипе, является невозможность электролиза высокоминерализованных рассолов, обогащенных кальцием и магнием, т.к. они, проходя через катионообменную мембрану, образуют на катоде малорастворимые осадки Mg(OH)2 и Ca(OH)2, что приводит к быстрому зарастанию катода и прекращению процесса электролиза. Кроме того, в известной электролитической ячейке (электролизере) в качестве рабочей используется только одна поверхность пластины электрода, что увеличивает габариты и массу электролизера, собранного из таких ячеек. Равномерная подача исходного рассола и католита по всей площади анода и катода обеспечивается здесь расширяющимся по направлению от вводного канала к электроду пазом, который требует для своего выполнения увеличенных размеров рамки, заметно превосходящих размеры электрода. Равномерность подачи рассола и его перемешивание в анодной камере осуществляют за счет размещения между рабочей поверхностью анода и ионообменной мембраной сетки, турбулизирующей поток. Необходимость использования турбулизатора усложняет конструкцию электролитической ячейки и ограничивает величину скорости движения рассола через анодную камеру, то есть при прочих равных условиях снижает производительность ячейки. Этот способ и установка по технической сущности являются наиболее близкими к заявляемому и выбраны нами в качестве прототипа. Техническим результатом заявляемого способа является расширение сырьевой базы для получения брома, что дает возможность использования хлоридных высокоминерализованных рассолов, содержащих ионы Ca и Mg, повышение рентабельности процесса за счет использования избыточного количества хлора, образующегося в электролизере, для окисления бромид-ионов в свежих порциях рассола и снижение затрат тепловой энергии для предварительного подогрева исходного рассола. Сущность изобретения Технический результат изобретения достигается путем применения двухкамерного электролизера с разделением катодного и анодного пространства токопроводящей диафрагмой, непроницаемой для двухвалентных катионов, например, анионообменной мембраной марок МА-40 или МА-41 и применением соляной кислоты в качестве электролита в катодной камере. Применение соляной кислоты позволяет использовать бромсодержащие рассолы любых типов, в том числе высокоминерализованные рассолы хлоридного кальциево-магниевого типа с содержанием хлорида кальция 170-350 г/л и хлорида магния 80-120 г/л, предварительное осаждение которых нецелесообразно ни по технологическим (большие объемы осадков), ни по экономическим (расход реагентов) причинам. Анионообменная мембрана препятствует проникновению в катодный объем осадкообразующих катионов (Mg2+, Ca2+), а соляная кислота предотвращает образование осадков даже в случае частичного их перехода в катодную камеру за счет малой селективности отечественных мембран. Способ осуществляется следующим образом. Высокоминерализованный рассол состава (г/л) в ионной форме: Br- - 9,3,0; Cl - 324; Ca - 107; Mg - 43; Na - 4,8; К - 2,2; Li - 0,5; Fe - 0,8, в молекулярной форме - Br - 9,3; CaCl2 - 297; MgCl2 - 170; NaCl - 12,2; KCl - 4,2: LiCl - 2,5; или близкого состава в пределах изменения компонентов рассола Br- - 1-10; CaCl2 - 170-350; MgCl2 - 80-170, NaCl - 12-17; KCl - 4-5; LiCl - 1,0-2,5, пропускают через анодную камеру электролизера в режиме непрерывного протока. Использование бромсодержащих рассолов с концентрацией брома ниже 1 г/л нецелесообразно из-за большого расхода пара при отдувке элементарного брома. Концентрации брома выше 10 г/л в природных рассолах практически не бывает. Содержание хлоридов кальция и магния в рассолах хлоридного натриевого типа может быть любым. На аноде происходит разряжение хлорид- и, частично, бромид-ионов по реакциям Cl- = 1/2 Cl2+e; Br- = 1/2Br2+е. Хлор, выделяющийся в электролизере, вступает во взаимодействие с неокислившимся Br--ионами в свежих порциях рассола с образованием Br2 по реакции Cl2+2Br-=Br2+2Cl-. Процесс осуществляют при плотности тока 6-12 А/дм2, напряжении 5-9 В, толщине между электродами от 8 до 24 мм. Избыточный хлор, образовавшийся в электролизере, используют для окисления Br--иона в свежих порциях рассола, для чего потоки исходного рассола и рассола из электролизера, содержащего хлор в растворенном состоянии (электролизат), а также газообразные бром и хлор в едином потоке направляют в десорбер, где происходит смешивание рассолов, хлорирование и окисление Br--иона, поступившего со свежим рассолом, до элементарного брома. В катодной камере циркулирует 5-10% раствор соляной кислоты. По мере расходования раствора электролита вводят дополнительные количества HCl. В качестве раствора электролита можно использовать также смесь растворов хлорида натрия (10-16%) и соляной кислоты (0,45-2,5%). Из десорбера бром отдувают паром и направляют на конденсацию и отделение Br2, товарный бром помещают в контейнеры. Таким образом, отличительными признаками способа являются: применение высокоминерализованных бромидсодержащих (содержание Br 1-10 г/л) рассолов хлоридного кальциево-магниевого типа; (


Формула изобретения
1. Способ извлечения брома из бромсодержащих растворов, включающий подачу исходного рассола в анодную камеру электролизера, имеющего ионообменную мембрану, отделяющую анодную и катодную камеры, вывод электролизата из анодной камеры с последующей подачей в десорбер, ввод в десорбер подогретого исходного рассола, нагрев смеси в десорбере и отвод из него бромсодержащего пара с последующей его конденсацией, сепарацией брома в разделительном сосуде и подачей его на склад, отличающийся тем, что в анодную камеру электролизера с анионообменной мембраной в качестве исходного рассола подают высокоминерализованный бромсодержащий рассол с суммарным содержанием хлоридов кальция и магния до 470 г/л, вывод электролизата и анодного газа, обогащенного хлором, осуществляют в едином потоке, при этом предварительный нагрев электролизата и исходного рассола, подаваемого в десорбер, минуя электролизер, осуществляют за счет тепла, выделяющегося при конденсации бромсодержащего пара и тепла выводимого отработанного рассола, причем в катодную камеру подают раствор электролита, не приводящего к образованию на катоде твердых отложений. 2. Способ по п.1, отличающийся тем, что в качестве раствора электролита в катодной камере используют 5 - 10%-ный раствор соляной кислоты. 3. Способ по п.1, отличающийся тем, что в качестве раствора электролита в катодной камере используют смесь раствора хлорида натрия и соляной кислоты. 4. Способ по п.1, отличающийся тем, что количество исходного рассола, подаваемого в десорбер, определяется отсутствием хлора в отходящем бромсодержащем паре. 5. Способ по п.1, отличающийся тем, что исходный рассол подают в верхнюю часть десорбера, а электролизат - в среднюю его часть. 6. Установка для получения брома из бромсодержащих растворов, включающая источник исходного рассола, емкость для соляной кислоты, электролизер, имеющий ионообменную мембрану, емкость с электролитом, соединенную с электролизером, десорбер, конденсатор, имеющий охлаждающий и охлаждаемый контуры, разделительный сосуд, трубопроводы, соединяющие электролизер с десорбером, конденсатор с разделительным сосудом, десорбер с конденсатором, емкости для жидкого брома и отработанного рассола, отличающаяся тем, что установка снабжена теплообменником-рекуператором, теплообменником-рекуператором I ступени и теплообменником-рекуператором II ступени, каждый из которых имеет охлаждающий и охлаждаемый контуры, при этом охлаждающие контуры конденсатора и теплообменника-рекуператора I ступени выполнены в виде участка трубопровода, соединяющего электролизер с десорбером, охлаждающие контуры теплообменника-рекуператора и теплообменника-рекуператора II ступени выполнены в виде участка трубопровода, соединяющего источник исходного рассола с десорбером, охлаждаемые контуры теплообменников-рекуператоров I и II ступени выполнены в виде участка трубопровода, соединяющего десорбер с емкостью для отработанного рассола, а десорбер выполнен в виде колонны, соединенной с источником пара. 7. Установка по п.6, отличающаяся тем, что электролизер содержит ряд параллельно соединенных электролитических ячеек, каждая из которых имеет анод, катод и анионообменную мембрану, размещенную между анодом и катодом, систему каналов подачи исходного рассола и электролита равномерно по всей площади анода и катода и систему каналов для вывода анолита и католита, и снабжен пористой перегородкой, размещенной между анионообменной мембраной и анодом так, что расстояние между ней и анодом в зоне подачи раствора меньше, чем это же расстояние в зоне выхода раствора. 8. Установка по п.7, отличающаяся тем, что анод электролизера выполнен в виде пластины из графита, размещенной в рамке, имеющей в своей нижней части вводный канал, паз, сообщающийся с вводным каналом, и ряд щелей, перпендикулярных пазу. 9. Установка по пп.7 и 8, отличающаяся тем, что толщина между анодом и катодом в электролизере составляет от 8 до 24 мм.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5