Способ извлечения редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья
Изобретение относится к области переработки окисленного технологически упорного сырья, в частности к переработке золошлаковых отходов от сжигания углей, с целью извлечения редкоземельных и радиоактивных металлов. Из золошлаковых отходов и раствора серной кислоты приготавливают пульпу, затем подвергают ее обработке в катодной зоне электролизера в условиях, поддерживающих выделение на катоде водорода. При осуществлении способа приготавливают пульпу с соотношением Т : Ж = 1 (5 - 10) и используют раствор серной кислоты концентрации 50 - 30 г/л, электровыщелачивание проводят в течение 0,25 - 1,5 ч при катодной плотности тока 0,5 - 5,- mA/см2 и температуре 18 - 80oC. Изобретение позволяет повысить экономичность процесса, упростить аппаратурное оформление и сократить время извлечения. 3 з.п.ф-лы, 5 табл., 3 ил.
Изобретение относится к области переработки окисленного технологически упорного сырья, в частности, к переработке золошлаковых отходов от сжигания углей с целью извлечения редкоземельных и радиоактивных металлов.
Одной из отличительных особенностей таких отходов является малое содержание редкоземельных и радиоактивных металлов (сотые доли процента) на фоне большого содержания соединений кремния, алюминия, железа и кальция, образованных при воздействии высоких температур (1200- 1700oC), и, следовательно, химически пассивных. Вышеперечисленные особенности приводят к тому, что для извлечения редкоземельных и радиоактивных металлов с достаточно высоким выходом необходимо использовать специальные технологические приемы: большое время обработки, повышенные температуры, повышенные концентрации реагентов для обработки или специальное оборудование. Известен способ [1] гидрометаллургического извлечения редких металлов из технологически упорного сырья. По данному способу матрицу упорного сырья измельчают, помещают в герметичный сосуд, содержащий раствор галогенных кислот, азотистую кислоту и комплексообразователи для редких металлов. В сосуд извне подают кислород. Процесс ведут при определенной величине pH реакционной смеси, давлении и потенциале полуволны восстановления окислителей достаточное время, которое выбирают из условия вскрытия матрицы сырья для максимального окисления и извлечения редких металлов из матрицы и образования маточного раствора, включающего растворенные комплексы и окислы редких металлов. Извлечение редких металлов из маточного раствора производят известными способами. Как видно из описанного способа, для эффективного извлечения металлов из матрицы необходимо контролировать такие параметры процесса, как показатель кислотности среды, потенциал восстановления окислителей и давление. Для такого контроля требуется сложная и дорогостоящая аппаратура, что значительно снижает экономический эффект при внедрении данного способа, тем более для переработки такого бедного сырья редких металлов, в частности, редкоземельных и радиоактивных, как золошлаковые отходы от сжигания энергетических углей. Известны способ и устройство для добычи драгоценных металлов [2] из бедного и упорного сырья и отходов добывающих предприятий, в которых есть недоизвлеченные металлы. В этом способе с целью увеличения полноты извлечения ценных компонентов и эффективного отделения их от вмещающих пород измельченный материал совместно с электролитом в виде суспензии проходит обработку в электродном блоке под воздействием электрического постоянного тока и ультразвукового поля, в результате чего происходит выщелачивание вмещающих пород и освобождение частиц полезного компонента, при этом до поступления в электродный блок суспензия проходит дополнительную обработку в ультразвуковом поле, где твердый материал подвергается механическому и кавитационному разрушению с одновременной активацией электролита. В целях усиления воздействия кавитации, вызванной ультразвуком, и улучшения энергетических характеристик электрохимических реакций в электродном блоке, обработка суспензии проводится при избыточном давлении 5-10 кг/см2. Описанные выше технические приемы, включающие ультразвуковую обработку и/или работу под избыточном давлении нет необходимости применять при извлечения редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья, в частности, золошлаковых отходов, поскольку соединения этих металлов химически более активны, чем цветных. Кроме того, ультразвуковая обработка приводит к дополнительному износу оборудования, что значительно снижает экономический эффект при внедрении данного способа. Наиболее близким к заявляемому является способ выделения скандия из зол каменного угля (Б. Г. Коршунов и др. Скандий. М.: Металлургия, 1987. С. 150-151), основанный на кислотном выщелачивании. После щелочного вскрытия золы каменного угля и обработки полученного плава раствором 18% соляной кислотой проводят последующие операции ионообменного концентрирования и осаждения в виде гидроксидов. Способ, в частности, осуществляется следующим образом. Золу бурого угля, содержащую, %: Sc2O3 0,012; SiO2 65,8; Al2O3 18,8; Fe2O3 12,1; MgO 1,0; TiO2 0,88; Ca0 0,7, вскрывают, сплавляя со щелочью при 600oC в течение 2 ч. В процессе водного выщелачивания плава при 70oC и т:ж = 1: 5 отделяют основную массу алюминия и частично кремний. В остатке содержится, %: Sc2O3 0,011 (90% исходного); Na2O 4,2; Al2O3 2,55; MgO 1,40; TiO2 1,22; CaO 0,95; основа - SiO2 и Fe2O3. Следующая операция - обработка суспензии остатка CO2. В карбонатный раствор вместе со скандием переходят основные количества кальция и магния, а также Ti, Al, Ga, Fe, Si, Си, Y и РЗЭ. Раствор подкисляют серной кислотой до pH = 1 и осуществляют ионообменное концентрирование скандия на фосфорилированной целлюлозе. Десорбируют скандий 10%-ным раствором карбоната аммония. После подкисления полученного раствора соляной кислотой и его кипячения осаждают гидроксиды водным раствором аммиака. В прокаленном оксиде скандия содержится 94,4% основного вещества, 3% TiO2, десятые доли процента Y2O3 и SiO2. Выход скандия составляет 64%. Основным недостатком данного способа является операция предварительного спекания золы с щелочью для отделения алюминия от золы. Это приводит к необходимости применения дополнительного оборудования - печей для сплавления, а также и к дополнительному расходу достаточно дорогого реагента - щелочи. Кроме того, степень извлечения скандия данным способом достаточно низка - выход скандия составляет 64%. Таким образом, представленные способы хотя и позволяют извлекать металлы из различных бедных материалов, но требуют различных измерительных приборов для контроля параметров процесса, специального устройства выщелачивателей, работающих под избыточным давлением и/или в ультразвуковом поле, а в ряде случаев и предварительных операций по вскрытию золы, в частности, сплавлением со щелочью. Задачей настоящего изобретения является создание более экономного и простого в аппаратурном исполнении, но эффективного способа для выщелачивания редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья, в частности, золошлаковых отходов, образующихся при сжигании энергетических углей, позволяющего извлекать вышеназванные металлы без операций предварительного вскрытия золы за короткое время обработки. Указанный технический результат достигается тем, что в способе извлечения радиоактивных и редкоземельных металлов из окисленного технологически упорного сырья, включающем кислотное выщелачивание, последнее (выщелачивание) осуществляют путем приготовления пульпы из золошлаковых отходов, взятых в качестве исходного сырья, и раствора серной кислоты и обработки ее на катоде с низким перенапряжением выделения водорода при постоянном перемешивании. Обязательное условие обработки - выделение на катоде водорода, поскольку экспериментально было установлено, что именно при этом начинается наиболее эффективное выделение редкоземельных и радиоактивных металлов из матрицы, что позволяет обойтись достаточно простым оборудованием без потери эффективности выщелачивания. Такой эффект, как предполагают авторы, связан с восстановлением оксидов редкоземельных металлов, содержащихся в сырье, выделяющимся и/или адсорбированным на катоде водородом по одному из механизмов [3]: механизм 1 - электронный механизм - прямой разряд твердой частицы: для окислов (где Мn+ - редкоземельный или радиоактивный металл) [Мn+ + (n/2)O2-] + ne + (n/2)H2+ = М + (n/2)ОН- Перенос электронов происходит между электролитом и труднорастворимым веществом. механизм 11 - участие в переносе электронов промежуточного вещества (X), образующегося на электроде в ходе процесса: для окислов (где Мn+ - редкоземельный или радиоактивный металл, X - выделяющийся и/или адсорбированный на катоде водород) [Мn++(n/2)O2-]+nX +nH+ = М+nX-+(n/2) H2O Наилучшие результаты по выщелачиванию достигаются на металлах с низким перенапряжением выделения водорода, например из платины, меди, никеля, титана и др.; наихудшие - на металлах с высоким перенапряжением, в частности, на свинце. Очевидно, на восстановление окислов металлов влияет механизм выделения водорода, зависящий, как известно, от материала электрода. При осуществлении способа приготавливают пульпу с соотношением Т:Ж = 1: (5-10) и используют раствор серной кислоты концентрации 50-300 г/л, электровыщелачивание проводят в течение 0,25 - 1,5 ч при катодной плотности тока 0,5 - 5,0 mA/см2 и температуре 18-80oC. С целью концентрирования редкоземельных и радиоактивных металлов и улучшения доступа к ним сернокислотного раствора, зола может быт предварительно подготовлена путем обработки щелочным раствором при следующих условиях: Сщел = 150- 250 г/л, Т = 80-90oC,












1. Патент РФ N 2114196. МПК: С 22 В 3/04. Способ гидрометаллургического извлечения редких металлов из технологически упорного сырья. 2. Заявка 97115398/02 RU, МПК 6 C 22 B 11/00, C 25 C 1/12, 7/00, БИ N 20, 20.07.99. 3. Даушева М.Р. Сонгна О.А. Поведение суспензий труднораствормых соединений на электроде. // Успехи химии. 1973. Т. 42, вып. 2. С. 323-342.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8