Способ переработки гексафторида урана на металлический уран и безводный фторид водорода и устройство для его осуществления
Изобретение относится к технологии и аппаратурному оформлению процесса переработки гексафторида урана с различным содержанием нуклида U-245 на металлический уран и безводный фторид водорода. Применение изобретения наиболее предпочтительно для переработки гексафторида урана с отвальным содержанием нуклида U-235. Способ состоит из четырех последовательно-параллельных стадий. На первой стадии гексафторид урана восстанавливают водородом до урана и низших фторидов урана в плазменном или газопламенном аппарате и направляют высокотемпературный уран-фторводородный поток на поверхность загрузки тетрафторида урана, находящегося в металлодиэлектрическом реакторе, помещенном в индуктор высокочастотного генератора и прозрачном для электромагнитного поля. При этом начинают вторую стадию, на которой уран полностью восстанавливают до элементного состояния и он оседает в нижнюю часть металлодиэлектрического реактора. Третья стадия - вывод урана через S-образный трубопровод, один конец которого вмонтирован в дно металлодиэлектрического реактора, а другой конец находится над охлаждаемой изложницей для разлива жидкого урана. Четвертая стадия - отвод газообразного безводного фторида водорода через фильтрационный модуль, снабженный эжекционной отдувкой для регенерации фильтрующих элементов. На этой стадии из технологического аппарата выводят второй товарный продукт - безводный фторид водорода. Устройство для осуществления вышеописанного способа содержит газофазный реактор, сопряженный с генератором высоких температур, металлодиэлектрический реактор, питаемый от высокочастотного генератора, системы вывода жидкого урана и безводного фторида водорода с экологической очисткой газового выхлопа. 2 с. и 15 з.п. ф-лы, 2 ил.
Изобретение относится к технологии и аппаратурному оформлению процесса переработки гексафторида урана с различным содержанием нуклида U-235 на металлический уран и безводный фторид водорода. Применение изобретения наиболее предпочтительно для переработки гексафторида урана с природным или отвальным содержанием нуклида U-235.
Область применения этого изобретения очень широка, но особенную актуальность в настоящее время имеет проблема переработки отвального гексафторида урана, полученного в процессах разделения изотопов урана в центрифугах или по лазерной технологии. При 90%-обогащении урана по нуклиду U-235 из каждой тонны UF6, поступившей в разделительный процесс,

- в процессах такого типа, особенно при использовании закалки в сверхзвуковых соплах, образуются микронные и субмикронные порошки, которые практически не улавливаются циклонами. Задачей, на решение которой направлено настоящее изобретение, является комплексная переработка гексафторида урана, заканчивающаяся получением урана в компактном виде, полной утилизацией безводного фторида водорода, повышением безопасности процесса. Для решения поставленной задачи по переработке гексафторида урана в металлический уран и безводный фторид водорода предлагается способ, основанный на водородном восстановлении гексафторида урана при высоких температурах, осуществляемый в одном технологическом аппарате и состоящий из четырех последовательно-параллельных стадий. Первая стадия заключается в восстановлении урана из гексафторида урана до элементарного урана или до низших фторидов урана. Эта промежуточная цель достигается возбуждением электрического разряда в потоке смеси газообразного гексафторида урана с водородом; при этом смесь гексафторида урана с водородом превращается в уран-фторводородную плазму, содержащую смесь атомов урана, водорода и фтора, молекулы фторидов урана (UF4, UF3, UF2, UF), фтора, водорода, положительно и отрицательно заряженные ионы и электроны. Если при этой операции температура плазмы составляет при атмосферном или близком к нему давлении 6000 K, основная часть урана содержится в виде атомов U, т.е. в газовой фазе имеет место полное восстановление урана. По выходе (U-F-H)-плазмы из зоны электрического разряда происходит интенсивная рекомбинация молекул фторидов урана, сопровождаемая мощным световым излучением и конденсацией нелетучих при обычных условиях фрагментов молекул гексафторида урана: тетрафторида и трифторида урана, а также элементного урана. Рекомбинация может приводить к образованию летучих фторидов: пентафторида и даже гексафторида урана. Закалка понижает глубину и скорость рекомбинации, но радикально не меняет ситуацию. Наиболее предпочтительно получать плазму в потоке смеси гексафторида урана и водорода с помощью безэлектродного электрического разряда (высокочастотного индукционного, высокочастотного емкостного, микроволнового). Если нет ограничений по чистоте полученного урана, для этой же цели можно использовать электродуговой разряд, применяя электродуговые плазмотроны с катодами из лантанированного или торированного вольфрама и аноды из легированной меди с электромагнитной круткой анодного пятна. Для осуществления этой стадии можно использовать и газовое фтор-водородное пламя, получаемое по реакции (1), но в этом случае потенциал первой стадии более низкий и основная нагрузка по восстановлению элементного урана переносится на вторую стадию. На второй стадии продукты восстановления гексафторида урана переводят в конденсированную фазу, в которой на несколько порядков величины замедляются рекомбинационные процессы, а процесс восстановления урана продолжается до получения жидкого урана. Эту операцию осуществляют следующим образом. Уран-фторводородную плазму, полученную на первой стадии, направляют на ванну расплава тетрафторида урана, вторую получают следующим образом. Загрузку тетрафторида урана помещают в охлаждаемую цилиндрическую оболочку, прозрачную для радиочастотного электромагнитного поля, устойчивую к коррозионному действию расплава фторидов урана. Указанную оболочку вставляют в индуктор высокочастотного генератора соосно с разрядной камерой, в которой получают (U-F-H)-плазму. Поток плазмы взаимодействует с поверхностью загрузки тетрафторида урана и плавит верхний слой последней. На индуктор подают высокочастотное напряжение; зона расплава тетрафторида урана взаимодействует с высокочастотным полем, отчего вся загрузка быстро разогревается за счет прямого индукционного нагрева и плавится. На поверхности расплава UF4 при взаимодействии с (U-H-F)-плазмой (или с (U-F-H)-пламенем) происходит конденсация урана и низших фторидов урана; одновременно происходит диспропорционирование последних в соответствии с уравнениями

По мере протекания реакций 4-6 в конденсированной фазе происходит интенсивный массообмен, обусловленный соотношениями температур плавления и плотностей получающихся продуктов. Температура плавления урана - 1133oC, плотность - 19,04 г/см3; температура плавления тетрафторида урана - 1036oC, плотность составляет 6,43-6,95 г/см3; температура плавления трифторида урана - 1427oC, плотность - 8,95 г/см3. Первым плавится тетрафторид урана, далее уран, последним трифторид урана. Из-за большого различия в плотности урана и фторидов урана происходит осаждение металла и всплывание фторидов в поверхностный слой, подвергаемый воздействию водородной плазмы, причем тетрафторид урана будет всплывать в расплаве трифторида урана. Таким образом, в течение нескольких минут под действием потока плазмы и прямого высокочастотного нагрева происходит полное восстановление урана из гексафторида урана и первоначальной загрузки тетрафторида урана. Убыль последнего непрерывно восполняют фторидами урана из (U-F-H)-плазмы. При этом фтор связывается в газообразный фторид водорода, который улетучивается из зоны восстановления урана. Третья стадия, осуществляемая одновременно с двумя первыми, - выведение жидкого урана из нижней части реактора-оболочки и розлив его в защитной атмосфере в охлаждаемые изложницы, емкость которых выбирается на основании принятого коммерческого стандарта на форму и вес урановых болванок. Четвертая стадия, осуществляемая одновременно с тремя первыми, - выведение и сбор второго товарного продукта - безводного фторида водорода. Вывод газообразного фторида водорода осуществляют через фильтрационный модуль, состоящий из многослойных регенерируемых металлокерамических элементов, не пропускающих микронные и субмикронные порошки и аэрозоли и тем самым обеспечивающих безопасность процесса от бесконтрольного проникновения пирофорного продукта за пределы технологической зоны. Далее поток безводного фторида водорода, очищенный от дисперсной фазы, конденсируют, собирают в виде жидкости в транспортные емкости и направляют на реализацию или на подпитку электролизных ванн для получения элементарного фтора. Устройство для переработки газообразного гексафторида урана принципиально состоит из трех основных частей:
- газофазный (плазменный) реактор для перевода гексафторида урана в уранфторную плазму; в понятие плазменный реактор входит собственно плазмотрон и источник электропитания плазмотрона - генератор; при необходимости плазменный реактор можно заменить газопламенным реактором восстановления гексафторида урана, в котором смесь гексафторида урана с водородом нагревают фторводородным пламенем (см. уравнение 1);
- герметичный кожух с крышкой, через которую по центру внутрь кожуха входит упомянутый газофазный реактор; вокруг последнего в крышке концентрически расположен кольцевой фильтрационный модуль для разделения газообразных и дисперсных продуктов, набранный из многослойных металлокерамических элементов, снабженных системой эжекционной регенерации;
- высокочастотный металлодиэлектрический реактор прямого индукционного нагрева для плавления фторидов урана, восстановления и отвода жидкого элементного урана в охлаждаемую изложницу; в понятие высокочастотный реактор входит собственно реактор, т.е. оболочка, где выплавляют уран, и источник электропитания - высокочастотный генератор. Схема устройства показана на фиг.2. Плазменный реактор представляет собой в зависимости от типа генератора 1 охлаждаемый трубчатый элемент 2, выполненный или из высокотемпературного диэлектрика, или из немагнитного металла, или из композиции - немагнитный металл/диэлектрик, или из коррозионно-стойкого металла, устойчивого во фторидных средах при высоких температурах. Плазменный реактор снабжен адаптером 4 для передачи электромагнитной энергии от генератора 1 (индуктор, внешние электроды, волновод, внутренние электроды и т.п.) и инжекторами 3 для ввода в реактор водорода и гексафторида урана. В газопламенном варианте газофазный реактор представляет собой более протяженный трубчатый металлический элемент с внешним охлаждением, выполненный из коррозионно-стойкого никелевого сплава, но вместо генератора его подсоединяют к источнику фтора (баллон, электролизная ванна). В этом случае генератором является вышеупомянутый источник фтора, а адаптером - вентиль для подачи фтора. Упомянутый плазменный реактор входит внутрь герметичного кожуха 5 через крышку 6 по центру последней; концентрически вокруг плазменного реактора расположены металлокерамические многослойные элементы 7 фильтрационного модуля, снабженные соплами 8 для импульсной секционной эжекционной регенерации. Кожух в нижней части выполнен в виде усеченного конуса 9, нижняя часть которого герметично соединена с вышеупомянутым высокочастотным металлодиэлекрическим реактором. Высокочастотный металлодиэлектрический реактор 10, расположенный соосно с упомянутым плазменным реактором, выполнен из толстенной медной трубы, имеющей продольные разрезы 11 и снабженной внутренним охлаждением. Воду для охлаждения вводят через штуцер 12 в нижней части реактора и выводят через штуцер 13 в верхней части реактора. Разрезы герметично заполнены пришлифованными вставками из высокотемпературного материала, обладающего диэлектрическими свойствами. Каналы охлаждения проходят в теле реактора между упомянутыми продольными разрезами, а упомянутые вставки из диэлектрического материала охлаждают за счет плотного контакта с металлическими стенками в упомянутых разрезах. Высокочастотный металлодиэлектрический реактор помещен внутрь индуктора 14 высокочастотного генератора 15. Реактор снабжен дном 16 и сливным отверстием 17 для вывода конечного продукта переработки - жидкого элементного урана. Диаметр металлодиэлектрического высокочастотного реактора несколько превышает диаметр плазменного реактора. Конический переход от плазменного реактора к высокочастотному реактору обеспечивает попадание в реактор налета с металлокерамических элементов 7, сбрасываемого с их поверхности при регенерации. Слив жидкого урана выполнен в виде S-образного трубопровода 18, верхняя точка которого находится на уровне не ниже верхнего витка индуктора, чтобы исключить слив фторидов урана до конверсии последних в элементный уран. Под выходным отверстием трубопровода находится водоохлаждаемая изложница 19. Вышеописанное устройство работает следующим образом. К плазменному реактору 2 подводят электрическую мощность от генератора 1, затем вводят поток водорода через один из инжекторов 3 и возбуждают в нем электрический разряд, в результате чего образуется поток водородной плазмы. В качестве генератора 1 использовали в различных вариантах высокочастотный генератор с перестраиваемой частотой в диапазоне 0,44-13,56 МГц, микроволновый генератор с частотой 2450 МГц, тиристорный выпрямитель. В случае использования фтор-водородного пламени генератором является источник или резервуар фтора. Газообразный гексафторид урана подают через другой инжектор прямотоком из контейнера, нагретого до температуры, близкой к температуре его плавления; при входе в плазменный реактор происходит диссоциация гексафторида урана и образование уран-фторводородной плазмы. Поток уран-фторводородной плазмы входит в соприкосновение с загрузкой тетрафторида урана UF4, помещенной предварительно в водоохлаждаемый металлодиэлектрический высокочастотный реактор 10, находящийся в индукторе 14 высокочастотного генератора 15, который включается одновременно с включением генератора, в результате чего электрическая проводимость этой загрузки увеличивается и в ней через разрезы 11 наводятся индукционные токи, разогревающие в течение нескольких минут весь объем упомянутой загрузки, в результате загрузка тетрафторида урана расплавляется. На поверхности расплава происходит конденсация урана и низших фторидов урана из уран-фторводородной плазмы, а также диспропорционирование последних и дальнейшее восстановление урана. Поверхностный слой обогащается ураном, который будучи намного тяжелее фторидов урана оседает вниз, а фториды всплывают вверх. Температура внутри загрузки превышает температуру плавления трифторида урана (1427oC) и составляет 1450-1600oC. Через 5-15 минут после начала процесса вся загрузка в высокочастотном металлодиэлектрическом реакторе состоит из расплавленного урана, уровень расплава повышается из-за поступления урана из уран-фторводородной плазмы, необходимо сливать уран через сливное отверстие 17 в дне 16 или начать вытяжку слитка. Один из вариантов слива жидкого урана, показанный на фиг.2 и автоматически обеспечивающий получение чистого урана без примеси фтора, - слив через S-образный трубопровод 18, верхняя точка которого расположена на уровне верхнего витка индуктора 14. Жидкий уран выводят в охлаждаемую изложницу 19. Другой вариант выгрузки урана из высокочастотного металлодиэлектрического реактора - синхронная вытяжка слитка урана. В процессе работы плазменного реактора и высокочастотного металлодиэлектрического реактора получается газовая фаза: фторид водорода HF, а также некоторое количество избыточного водорода. После взаимодействия уран-фторводородной плазмы с поверхностью расплава газы заполняют герметичный кожух 5 и выходят через фильтрационный модуль 7 в трубопровод, соединенный с конденсатором и транспортным контейнером для сбора жидкого фторида водорода. При этом фторид водорода отделяют от водорода, последний направляют далее на утилизацию. В процессе удаления фторида водорода из кожуха 5 через фильтрационный модуль на внешней поверхности многослойных фильтрующих элементов осаждаются аэрозоли, размер которых достигает 0,1-0,01 мкм. Для регенерации этих элементов используют импульсную секционную эжекционную регенерацию, при которой основным регенерирующим газом является уже отфильтрованный газ. Регенерацию секций фильтрационного модуля производят поочередно, без остановки фильтра, путем кратковременной, в течение 0,1-0,3 с подачи сжатого азота через каждое сопло. Расход азота на регенерацию не превышает 0,05% от объема профильтрованного газа. Конструкция многослойных фильтрующих элементов обеспечивает улавливание не менее 99,9% механических частиц и аэрозолей размером частиц не менее 0,1 мкм. Способ и устройство опробованы в лабораторных условиях при использовании различных режимов и источников высоких температур. Пример 1. Для получения (U-H-F)-плазмы использован высокочастотный индукционный разряд. Плазменный реактор выполнен из отрезка медной трубы, снабженной внутренним охлаждением и продольными разрезами, герметично заполненными диэлектрическими вставками из оксида магния; реактор помещен в индуктор высокочастотного генератора с частотой 13,56 МГц, внутренний диаметр реактора - 0,05 м, длина - 0,25 м. Колебательная мощность генератора 30 кВт. Реактор прямого индукционного нагрева выполнен таким же образом, как и плазменный ректор, но запитан от второго высокочастотного генератора с частотой 1,56 МГц. Колебательная мощность генератора 30 кВт. Внешний диаметр цилиндрической части реактора 0,15 м, внутренний диаметр - 0,11 м. Верхний диаметр конической части - 0,25 м. Дно ректора выполнено в виде диска из карбида кремния, в кольцевой щели которого фиксирован сам корпус реактора. В центре указанного диска проделано отверстие, герметично закрытое пробкой из карбида кремния. Фторид водорода отводили через металлокерамический фильтр; за металлокерамическим фильтром установлен конденсатор, охлаждаемый жидким азотом, и фильтр санитарной очистки. Расход гексафторида урана составил 4,2 кг U/ч, начальная загрузка тетрафторида урана - 7,5 кг U. Высокочастотный плазмотрон первоначально работал только на водороде при расходе последнего 1,6 нм3/ч до расплавления верхнего слоя загрузки UF4. Через 1,6 мин работы плазмотрона верхний слой загрузки расплавился и был включен второй высокочастотный генератор, питающий металлодиэлектрический реактор прямого индукционного нагрева. Загрузка в индукторе, пропитанная расплавом UF4, сразу же начала нагреваться индукционными токами и через 7,3 мин после включения высокочастотных колебаний расплавилась, что фиксировали по изменению режима загрузки генератора и по понижению уровня расплава тетрафторида урана в металлодиэлектрическом реакторе. Одновременно в расплавлением тетрафторида включали подачу гексафторида урана. В верхней части высокочастотного металлодиэлектрического реактора происходило накопление расплава урана за счет урана, конденсирующегося непосредственно из плазмы и возникающего при диспропорционировании фторидов урана по уравнениям 4-6. По мере плавления загрузки расплав урана опускался в нижнюю часть реактора. Через 56 мин выключили подачу гексафторида урана, оба высокочастотных генератора и дистанционно удалили пробку из дна высокочастотного металлодиэлектрического реактора прямого индукционного нагрева. Из реактора вытек расплав и заполнил изложницу. Общая продолжительность работы установки 1 ч 12 мин. Переработано по расчету 3,92 кг U из гексафторида урана. Из изложницы извлекли слиток общим весом 10,3 кг, после охлаждения и разборки металлодиэлектрического реактора и ревизии фильтра из него удалили 0,63 кг различных остатков, по преимуществу остатки корки шлака, зацепившегося за стенку реактора. Теоретический выход составляет 10,72 кг U; достигнутый выход урана




Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2