Способ предсказания землетрясений
Использование: сейсмология, в национальных системах наблюдения и обработки данных геофизических измерений для прогнозирования землетрясений. Сущность изобретения: под воздействием литосферных волн координаты точек на земной поверхности испытывают периодические аномальные отклонения относительно состояния покоя. Амплитуды таких отклонений достаточны, чтобы их можно было достоверно регистрировать с помощью гироскопических систем хранения координат. В зарегистрированном сигнале содержится вся информация о предстоящем землетрясении: координатах очага, магнитуде, времени главного толчка. Технический результат: повышение достоверности, точности и надежности прогнозирования и оповещения. 1 табл., 3 ил.
Изобретение относится к сейсмологии и может быть использовано в национальных системах наблюдения и обработки данных геофизических измерений для прогнозирования землетрясений.
Землетрясения были и остаются наиболее масштабными природными катаклизмами, связанными с массовой гибелью людей и большими разрушениями. Известно множество косвенных признаков возможного землетрясения, регистрируемых различными физическими методами, такие как сдвиговые деформации земной коры, изменение скоростей распространения продольных и поперечных волн, неоднородности в ионосфере над очагом и др. (см., например, Рикитаке T. Предсказание землетрясений; перевод с англ. - M.: Мир, 1979, с. 314, табл. 15.13). Перечисленные признаки-предвестники имеют долговременный интервал существования, но не позволяют точно предсказать момент наступления главного толчка. Для регистрации сейсмических колебаний применяют сейсмографы, графиметры, акселерометры, велосимеры и другие устройства (см. , например, "Сейсмические приборы" в книге Ф.С. Цзе, Н.Е. Морзе, Р.Т. Хинкл "Механические колебания"; перевод с англ. - М.: Машиностроение, 1966, с. 83-86, рис. 2.37 (сейсмограф), рис. 2.40 (акселерометр) - аналоги). Составной частью перечисленных аналогов является, как правило, инерционная масса на упругой подвеске, преобразующая ускорение в линейное смещение. Недостатками перечисленных аналогов являются нелинейные искажения при регистрации низких сейсмических волн с периодами менее 1 с. Кроме того, регистрация сигналов с периодами десятки секунд является вообще проблематичной (см. , например, Научный сборник "Геофизические методы мониторинга природных сред"/Под редакцией В.Н. Сорокина.- M.: АН СССР, Институт общей физики, 1991, с. 267). Одним из наиболее достоверных признаков-предвестников землетрясений является появление накануне главного толчка сверхнизких сейсмических волн (см. , например, Машимов М.М. Технологии геодезии новейших времен: первые шаги и проблемы.- Геодезия и картография, N 6, 1997, с. 6-18). Ближайшим аналогом заявляемого способа является способ предсказания землетрясений (см. патент РФ N 2130195, 1999 г.). В способе ближайшего аналога осуществляют измерение признака-предвестника в виде сверхнизких литосферных волн путем преобразования сейсмических волн в электрический сигнал интерферометром-акселерометром Маха-Цандера, взятие отсчетов измеряемой величины в нескольких точках пространства специально создаваемого измерительного полигона в виде прямоугольной решетки, формирование матрицы A (x, y) цифровых отсчетов зависимости амплитуды сигнала от пространственных координат и восстановление признака-предвестника на основе Фурье-преобразования матрицы. Недостатками ближайшего аналога являются: - трудности создания протяженного измерительного полигона со стороной, соизмеримой с длиной волны, поскольку длина сверхнизких волн составляет от сотен до нескольких тысяч километров. При меньшей стороне прямоугольной решетки (окна наблюдений) восстановление огибающей пространственного спектра методом Фурье-преобразования будет недостоверным; - трудности калибровки измерительных каналов в связи с большими потерями в световодах на протяженных линиях измерительного полигона. Задача, решаемая данным изобретением, заключается в обеспечении возможности прямого измерения признака-предвестника в виде сверхнизких литосферных волн, распространяющихся от очага накануне землетрясения и расчета характеристик ожидаемого землетрясения по параметрам зарегистрированных измерений. Поставленная задача решается тем, что в способе предсказания землетрясений, при котором осуществляют измерение сверхнизких литосферных волн, генерируемых очагом землетрясения накануне главного толчка, определяют направление прихода этих волн, в сейсмоопасном районе размещают системы хранения координат (x1, y1, z1...xn, yn, zn) точек на земной поверхности, разнесенных на измерительных базах, регистрируют момент появления периодических отклонений (












фиг. 3 - функциональная схема устройства, реализующего способ. Перечисленная совокупность существенных признаков позволяет реализовать такие новые свойства заявляемого решения, как:
- расчет гипоцентра по начальным отклонениям (



- расчет магнитуды с возможностью упреждающего прогнозирования последствий;
- высокая точность прогнозирования и оповещения, основанная на непосредственном измерении признака-предвестника. Анализ известных технических решений (аналогов) в исследуемой и смежных областях позволяет сделать вывод об отсутствии в них признаков, совпадающих с существенными признаками заявляемого решения и о соответствии последнего критерию изобретения "изобретательский уровень". Техническая сущность заявляемого изобретения заключается в следующем. В настоящее время отсутствуют измерители, способные достоверно регистрировать сверхнизкие волны на земной поверхности. Известны методы восстановления пространственного спектра волн с частотами менее 1 Гц дискретным Фурье-преобразованием (см., например, Марпл С.А. Цифровой спектральный анализ; перевод с англ. - М. : Мир, 1990 (алгоритм БПФ) с. 77-79). Отсутствие измерителей, способных достоверно регистрировать сверхнизкие литосферные волны, является одной из причин существующей до настоящего времени скрытности момента главного толчка. В то же время существуют системы хранения координат на ракетах, спутниках (см. , например, "Космонавтика", Энциклопедия.- М.: Советская энциклопедия, 1985 г. /Под редакцией В.П. Глушко, Гироскопическая стабилизированная платформа, с. 88), которые выдают сигнал рассогласования при отклонении ракеты в какой-либо плоскости движения от заданных направлений в пространстве. Под воздействием литосферных волн координаты точек на земной поверхности испытывают периодические аномальные отклонения относительно состояния покоя. Амплитуды таких отклонений достаточны, чтобы их можно было достоверно регистрировать с помощью гироскопических системы хранения координат. Закрепив на местности гиростабилизированную платформу в точке, координаты которой заранее определены с высокой точностью, по сигналам рассогласования с выхода системы можно регистрировать отклонения координат (






cos2



Из аналитической геометрии известно, что в прямоугольной системе координат косинус-направляющая вектора равна отношению его проекции на данную ось к длине вектора. Длина вектора








фазовый центр источника литосферных волн находят как точку пересечения радиус-векторов в пространстве, для чего необходимо измерять отклонения (


























и вычисляют отношения

которые представляют собой последовательный ряд производных









Поскольку


lgE = a1 + b1



В соответствии с общим физическим принципом частота собственных колебаний механической системы (см., например, Вибрации в технике. Справочник/Под редакцией К. В. Фролова, том 6.- М.: Машиностроение, 1981, с. 172) задается выражением

где c - жесткость упругого элемента, m - колебательная масса, T - период. Чем больше механические напряжения в очаге, тем больше сила упругой отдачи и "жесткость" породы, тем выше частота "вибраций" очага. Следовательно, период литосферных волн очага T связан с магнитудой ожидаемого землетрясения M обратно пропорциональной зависимостью. Для расчета функции регрессии М = М(Т) использованы данные апостериорной обработки результатов регистрации следующих состоявшихся землетрясений (см. таблицу). С учетом вышеприведенных соотношений коэффициенты регрессии для функции M = a/lgT - b для размерности периода литосферных волн Т (ч) составили a




Из графика на фиг. 1 натуральный логарифм отношения амплитуд отклонений двух смежных периодов равен

Откуда время удара

Таким образом, по параметрам сверхнизких литосферных волн, распространяющихся от очага накануне главного толчка, рассчитывают все характеристики ожидаемого землетрясения: гипоцентр, магнитуду (М), время наступления события (tx). Пример реализации способа. Заявляемый способ может быть реализован по фиг. 3. Функциональная схема устройства (фиг. 3) содержит системы хранения координат точек 1, установленные в сейсмоопасном районе 2 и разнесенные на измерительных базах 3. Системы хранения координат 1 содержат стандартные порты 4, соединенные с буфером-накопителем 5 цифровых отсчетов значений измеряемых величин. Результаты измерений координат точек по линиям связи 6 передаются в аналитический центр 7 в составе оперативного запоминающего устройства 8, центрального процессора 9, винчестера 10, принтера 11, дисплея 12 и клавиатуры 13. Обеспечивается возможность считывания файлов измерительной информации через сервер 14 в ИНТЕРНЕТ 15, а также взаимодействие с местной системой оповещения 16. Устройство работает в следующей последовательности. В Аналитическом центре 7, оборудованном на базе ПЭВМ типа IBM PC/486/487, организуется непрерывное, круглосуточное наблюдение за сейсмической обстановкой обслуживаемого региона. Для этого на винчестер 10 записывают специализированный комплекс программного обеспечения типа МАТН САД, посредством которого реализуется программный расчет параметров наблюдаемого процесса и ведется база данных регистрируемых отсчетов измеряемых величин. В дежурном режиме наблюдения осуществляется циклический опрос буферов-накопителей 5 результатов измерений координат с тактовой частотой, задаваемой сервисной программой. Чтобы не перегружать Центр избыточной информацией, тактовая частота выбирается низкой, с циклом опроса единицы секунд. Отслеживаемыми параметрами в дежурном режиме наблюдения являются величина и знак отклонения координат точек, а также величина производной этих отклонений. Отслеживаемые параметры непрерывно отображаются на экранах дисплея 12 и периодически документируется распечаткой на принтере 11. В случае одинакового знака отклонения координат точек всех систем и равенства производных этих отклонений во всех плоскостях, что свидетельствует о приходе литосферных волн, система переводится в режим слежения. В режиме слежения (сервисной программой) устанавливают технически возможный темп выдачи данных от систем хранения координат. Осуществляют оперативный расчет параметров по операциям способа и выдачу информации о предстоящем землетрясении в ИНТЕРНЕТ 15 и систему оповещения 16. Устройство может быть реализовано на существующих средствах измерений и элементной базе. Так, буфер-накопитель может быть выполнен на стандартной интегральной плате типа контроллера ЛА-32-12 (или П. 12.05), совместимой со стандартными шипами ОЗУ ПЭВМ IBM PC 485/487. К настоящему времени известно множество модификаций и видов гироскопических систем: механические, лазерные, атомные. В соответствии с интервалом значений периода сверхнизких литосферных волн (фиг. 2), этому требованию удовлетворяет, например, гироскопическая система - шифр ADXL-150. Эффективность заявляемого способа характеризуется такими показателями, как достоверность, точность, надежность. Благодаря тому что при измерениях и вычислениях используются значения приращений функций к сумме приращений, не накладываются ограничения на абсолютные значения измеряемых величин и их размерности. Кроме того, метод отношений обеспечивает устойчивость результатов оценок, компенсируя ошибки флуктуаций. Использование заявляемого способа позволит организовать своевременное оповещение населения и снизить размеры ущерба.
Формула изобретения










отождествляют его с гипотетическим центром очага, а время удара tx, отсчитываемое от момента появления периодических отклонений координат точек, и магнитуду M ожидаемого землетрясения оценивают из регрессионных зависимостей:

M = a / lgT - b,
где T - регистрируемый период отклонения координат, ч;
k - натуральный логарифм отношения амплитуд отклонения координат двух смежных периодов;
a, b - коэффициенты регрессии.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4