Способ определения постоянных времени механических и электромеханических колебательных систем при наличии двух интегрирующих усилителей в цепи измерения
Изобретение предназначено для построения математической модели сложной динамической системы с распределенными параметрами и может быть использовано для анализа нестационарных процессов в механических, электромеханических и электрических системах. Способ основан на возбуждении колебаний системы гармоническим воздействием в диапазоне ее собственных частот и регистрации амплитудно-фазовой частотной характеристики измеряемого кинематического параметра. Для каждой степени свободы системы фиксируют характерные частоты, соответствующие экстремумам действительной и мнимой составляющих кинематического параметра. По этим частотам рассчитывают постоянные времени и коэффициенты усиления. Особенностью способа является то, что в качестве кинематического параметра используют двойной интеграл от выходного сигнала колебательной системы, а передаточную функцию системы представляют в виде двойного интеграла суммы передаточных функций колебательных звеньев. Способ позволяет практически полностью исключить случайную помеху с нулевым средним значением и тем самым повысить точность определения постоянной времени динамической системы. 2 ил.
Изобретение относится к измерительной технике и может быть, например, использовано для построения математической модели сложной механической или электромеханической системы с распределенными параметрами, что необходимо для анализа нестационарных процессов в механических, электромеханических и электрических системах.
Заявляемое изобретение направлено на решение задачи, заключающейся в устранении погрешности, повышении точности измерений и унификации аппаратных средств, необходимых для экспериментального снятия амплитудно-фазочастотных характеристик (АФЧХ) с целью построения по ним математической модели эквивалентной электромеханической системы. Известен способ определения коэффициентов демпфирования, основанный на обработке АФЧХ (см. Патент РФ N 2093808, МПК6 G 01 M 7/02, 20.10.1997), в соответствии с которым возбуждают колебания системы гармоническим воздействием в диапазоне ее собственных частот, измеряют кинематический параметр колебаний, регистрируют амплитудно-фазовую частотную характеристику измеряемого кинематического параметра, для каждой степени свободы фиксируют характерные частоты, соответствующие экстремумам действительной и мнимой составляющих кинематического параметра, и по ее частотам рассчитывают относительные коэффициенты демпфирования. В качестве кинематического параметра колебаний измеряют скорость перемещения, фиксируют характерные частоты









где



Положив p = j


Выделим действительную и мнимую части этой передаточной функции:


Исследуем вещественную часть на экстремум. Для этого найдем производную:

Приравниваем производную к нулю при


Рассмотрим числитель этого выражения:

В результате решения этого уравнения получим формулу для определения постоянной времени демпфирования по экстремальным точкам АФЧХ для динамических систем, представляющих собой произведение двух интегрирующих и колебательных звеньев:

где


Ki =


где Ai - размер петли АФЧХ по мнимой оси; Ki > 0, если петля АФЧХ находится выше своей начальной точки, i < 0, если петля АФЧХ лежит ниже начальной точки. Относительный коэффициент демпфирования находим по формуле:

Кроме того, особенность способа заключается в том, что измерения можно производить на той же самой аппаратуре, что и в случае использования АФЧХ по перемещению, всего лишь включая в цепь измерения два интегрирующих звена, используя формулу (3). На фиг. 1 показана АФЧХ по перемещению для вертикально-фрезерного станка модели 654, которая описывается формулой:

(см. Ю. Н. Санкин. "Динамические характеристики вязко-упругих систем с распределенными параметрами" - Изд-во Саратовского университета, 1977, с. 250). На фиг. 2 - АФЧХ для той же системы, при наличии двух интегрирующих звеньев в цепи измерения, то есть АФЧХ, построенная по формуле:

Для определения постоянных времени T2i в формуле (4) используют соотношение:

Формулы для построения АФЧХ на фиг. 1 и на фиг. 2 различны, хотя их применение в обоих случаях по затратам труда и точности практически эквивалентны, однако применение АФЧХ для систем, представляющих собой произведение интегрирующих и колебательных звеньев, предпочтительнее, так как практически полностью исключена случайная помеха с нулевым средним значением, и тем самым повышается точность определения постоянной времени динамической системы. Проверка способа проводилась при снятии АФЧХ вертикально-фрезерного станка модели 654 (см. фиг. 2). Например, для одного из образцов станка значения характерных частот равны:






Постоянные времени T2i и T1i, полученные по формулам (7) и (4) соответственно:
T21 = 6.39


T22 = 2.96


T23 = 0.103


Формула изобретения

для которой постоянные времени Т1i, Т2i и коэффициенты усиления Кi определяют по формулам


Ki =


где


Ai - размер петли амплитудно-фазовой частотной характеристики по мнимой оси,
при этом Кi > 0, если петля амплитудно-фазовой частотной характеристики находится выше своей начальной точки, и Кi < 0, если петля амплитудно-фазовой частотной характеристики лежит ниже начальной точки.
РИСУНКИ
Рисунок 1, Рисунок 2