Способ разделения карбинолов
Настоящее изобретение относится к способу преимущественного получения энантиомера (R)-(+)-5-(фенил) гидроксиметил-1-метил-1Н-пиразола (R-(+)-1) с высоким выходом выделением из рацемической смеси ()-5-(фенил)гидроксиметил-1-метил-1H-пиразола формулы 1, характеризующемуся последовательным осуществлением способа, который включает использование липазы, обладающей ферментной активностью, в реакции избирательной трансэтерификации, с помощью сложного эфира формулы 3: R1СООR2, где R1 представляет метил или этил, R2 - винил или изопропенил. В результате трансэтерификации получают смесь, содержащую непрореагировавший R-(+)-1 и сложный эфир (S)-(-)-5-(фенил) алкилкарбонилоксиметил-1-метил-1H-пиразола, формулы 4, где 1 представляет метил или этил. Непрореагировавший энантиомер R-(+)-1 отделяют от указанного эфира хроматографией или кристаллизацией в соответствующем растворителе с рекуперацией R-(+)-1 и осуществляют гидролиз полученного сложного эфира. 5 з.п. ф-лы.



г) в некоторых случаях наблюдается высокая энантиоселективность. Несмотря на преимущества использования ферментов в органических растворителях имеются и некоторые недостатки:
а) поиск подходящего растворителя;
б) низкая скорость реакции;
в) уменьшение оптической чистоты целевых продуктов в реакциях, имеющих реверсивный характер [см. a) A.M.Klibanov. Trends Biochem.Sci 1989, 14, 141;
b) C.S. Chen, C.J.Sih, Angew. Chem. Int. Ed.Engl., 1989, 28, 695]. Подтверждение того факта, что некоторые ферменты могут действовать в органических растворителях, послужило одной из главных причин резкого увеличения за последнее десятилетие использования реакций биопревращений для получения продуктов, имеющих терапевтический и промышленный интерес. [см.: a) A.N.Collins, G.N.Sheldrake, S.Crosby "Chirality in Industry" Wiley, Лондон, 1992;
b) S.C.Stinson, Chem. & Eng. News, 1994, 38;
c) A.C.Margolin, Enzyme Microb. Techol. 1993, 15, 266]. Задача настоящего изобретения состоит в разработке экономически выгодного способа получения правовращающего стереоизомера (R)-(+) соединения 1, который мог бы быть одновременно полезен для получения левовращающего стереоизомера (S)-(-) этого же соединения 1. Способ, к которому относится настоящее изобретение, основывается на биокатализе, где используется биокатализатор для обеспечения избирательной трансэтерификации между рацемическим спиртом 1 и сложным эфиром формулы 3, где R1 представляет собой метил или этил и R2 представляет собой винил или изопропенил. С помощью фермента, обеспечивающего соответствующую стереоселективность, можно получить реакционную смесь, содержащую непрореагировавший энантиомер 1, а также сложный эфир формулы 4, где R1 представляет собой метил или этил, полученный из другого энантиомера 1.


Для отделения и рекуперации непрореагировавшего спирта и полученного сложного эфира можно, таким образом, относительно просто применить известные химические методы, такие как хроматография или кристаллизация. Другой аспект изобретения состоит в проведении гидролиза полученного сложного эфира с использованием кислотного или основного катализатора таким образом, чтобы получить соединение 1 с рацемизацией последнего или с сохранением конфигурации. В случае когда получают рацемическую смесь соединения 1, то ее затем можно снова обработать с участием указанного биокатализатора для осуществления вышеописанной трансэтерификации, и так последовательно несколько раз. Таким образом добиваются практически полной трансформации рацемического субстрата 1 с образованием требуемого энантиомера. Стратегия, используемая в настоящем изобретении, состоит в том, чтобы последовательно комбинировать энзиматическую трансэтерификацию карбинола 1 и химическую трансформацию с рацемизацией. Ферментами, наиболее подходящими для осуществления трансэтерификации, являются гидролазы, главным образом липазы, выделяемые микроорганизмами, в свободном виде или иммобилизованные. Сложными эфирами, используемыми в качестве ацилирующих агентов, являются сложные енольные эфиры формулы 3, где R1 представляет собой метил или этил и R2 представляет собой винил или изопропенил. Реакция трансэтерификации протекает в отсутствие растворителя или в соответствующем растворителе, таком как гексан, циклогексан, толуол, ацетон, диоксан, тетрагидрофуран, этанол и т. д. при температуре между 20oC и температурой рефлюкса в течение времени, необходимого для осуществления трансформации, это время может колебаться от 6 до 48 часов. Добавление молекулярного сита в середине реакции может повысить активность и сократить содержание воды. Протекание реакции ацилирования легко контролируется ядерным магнитным резонансом протона. Непрореагировавший энантиомер 1 отделяется от другого этерифицированного энантиомера 4 хроматографией на колонке с силикагелем или кристаллизацией в соответствующем растворителе. Оптическую чистоту анализируют с помощью хиральной высокоэффективной жидкостной хроматографии (ВЭЖХ). Этерифицированный энантиомер 4 гидролизуют, чтобы затем получить рацемический карбинол 1 или соответствующий гомохиральный карбинол. Гидролиз осуществляется соответственно в кислой или основной среде при температуре между 60oC и температурой рефлюкса в течение периода времени от 2 до 24 часов. Путем алкилирования стереоизомеров (+) и (-) соединения 1 диметиламинохлорэтаном в условиях фазового перехода и последующей обработки лимонной кислотой, получают соответственно стереоизомеры (+) цитрат и (-) цитрат соединения 2. Вышеописанный способ трансэтерификации рацемического карбинола 1 для получения гомохирального карбинола и гидролиза образованного гомохирального сложного эфира для получения соответствующего гомохирального спирта или же рацемического спирта, а также подробное описание примеров, данных ниже, приведены исключительно для иллюстрации и не должны ограничивать рамки настоящего изобретения. Пример 1
Разделение (


Смесь 100 г вышеуказанного рацемического карбинола, 50 г активированной липазы PS выпускаемой AMANO PHARMACEUTICAL COMPANY Ltd. (NACOYA-JP), 50 г активированного молекулярного сита с ячейками в 3


Гидролиз и рацемизация (-)-5-(фенил)метилкарбонилокси-метил-1- метил-1H-пиразола, (-) -4:
76,5 г (-)-5-(фенил)метилкарбонилоксиметил-1-метил-1H-пиразола, (-)-4, нагревают с обратным холодильником в 300 мл 6 н. соляной кислоты в течение 12 часов, фильтруют при нагревании и подщелачивают раствор гидроксидом аммония, чтобы получить 61,4 г рацемического карбинола (


Разделение (


Смесь 61,4 г карбинола (



Разделение (

Смесь 3,5 г карбинола (

Гидролиз с сохранением конфигурации (-)-5-(фенил)метилкарбонилоксиметил-1-метил-1H-пиразола, (-)-4:
2,3-г (-)-5-(фенил)метилкарбонилоксиметил-1-метил-1H-пиразола, (-)-4, нагревают с обратным холодильником в 4 мл 20% гидроксида натрия и 10 мл этанола в течение 2 часов, выпаривают этанол, добавляют 10 мл воды, осуществляют экстракцию диэтиловым эфиром, сушку сульфатом магния, фильтрацию и получают из раствора 1,8 г (95%) (-)-5-(фенил)гидроксиметил-1-метил-1H-пиразола, (-)-1, с оптической чистотой выше 94%, [

Получение цитрата (+)-5-{[N,N-диметиламиноэтоксифенил]метил}- 1-метил-1Н-пиразола, (+)-2 цитрата. Нагревают с обратным холодильником в течение 7 часов смесь 12,7 г (+)-5-(фенил) гидроксиметил-1-метил-1H-пиразола, (+)- 1, в 250 мл толуола, 125 мл 50% гидроксида натрия, 3 г хлористого триэтилбутиламмония и 14,6 г хлоргидрата диметиламинохлорэтана. Из холодной смеси экстрагируют с помощью толуола 16,2 г (92,6%) (+)- 5-{[N,N-диметиламиноэтокси)-фенил]метил}-1-метил-1H-пиразола, (+)-2. Взбалтывают при 40oC смесь 15 г (+)-5-{[N,N-диметиламиноэтокси)-фенил] метил} -1-метил-1H-пиразола, (+)-2, и 13,5 г моногидрата лимонной кислоты в этаноле до полного растворения. Из этого раствора выделяют кристаллизацией 24,7 г (94,5%) цитрата (+)-5-{[N,N-диметиламиноэтокси)-фенил]метил}-1-метил-1H- пиразола, (+)-2, точка плавления 129-131oC, [

Получение цитрата (-)-5-{ [N, N-диметиламиноэтокси)фенил]метил} -1-метил-1H-пиразол, (-)-2 цитрата. Действуя так же, как в примере 6, и используя энантиомер (-)-5- (фенил)гидроксиметил-1-метил-1H-пиразол, (-)-1 как продукт разделения, получают (-)-5-{[N,N-диметиламиноэтокси)-фенил]метил} -1-метил-1H-пиразол, (-)-2 цитрат, точка плавления 128-130oC [

Формула изобретения


отличающийся тем, что осуществляют избирательную трансэтерификацию между сложным эфиром формулы 3

где R1 представляет собой метил или этил;
R2 представляет собой винил или изопропенил,
и энантиомером карбинола S-(-)-5-(фенил) гидроксиметил-1-метил-1Н-пиразола, S-(-)-1, указанной рацемической смеси с использованием как катализатора липазы, обладающей ферментной активностью в реакции трансэтерификации, что приводит к получению реакционной смеси, содержащей непрореагировавший энантиомер R-(+)-1 и S-(-)-5(фенил)алкилкарбонилоксиметил-1-метил-1Н-пиразол формулы 4

где R1 представляет собой метил или этил, обозначаемый S-(-)-4,
непрореагировавший энантиомер R-(+)-1 отделяют от полученного сложного эфира S-(-)-4 хроматографией или кристаллизацией в соответствующем растворителе с рекуперацией энантиомера (R) - (+)-5-(фенил)-гидроксиметил-1-метил-1Н-пиразола, R-(+)-1, и осуществляют гидролиз полученного сложного эфира S-(-)-4. 2. Способ по п.1, отличающийся тем, что винилацетат формулы 3, где R1 представляет собой метил и R2 представляет собой винил, используют как реактив и как растворитель в реакции трансэтерификации. 3. Способ по пп.1 и 2, отличающийся тем, что слабополярный растворитель, например циклогексан, используют для кристаллизации энантиомера (R) - (+)-5-(фенил)гидроксиметил-1-метил-1Н-пиразола, (R) - (+)-1, из раствора, содержащего также сложный эфир (S)-(-)-5-(фенил)метилкарбонилоксиметил-1-метил-1Н-пиразол, (S)-(-)-4, формулы 4, где R1 представляет собой метил. 4. Способ по одному из пп.1 и 2, отличающийся тем, что осуществляют хроматографию на колонке из силикагеля для отделения карбинола (R)-(+)-5-(фенил)гидроксиметил-1-метил-1Н-пиразола, (R)-(+)-1, от сложного эфира (S)-(-)-5-(фенил)метилкарбонилоксиметил-1-метил-1Н-пиразола, (S)-(-)-4, где R1 представляет собой метил. 5. Способ по п.1, отличающийся тем, что осуществляют гидролиз сложного эфира (S)-(-)-5-(фенил)алкилкарбонилоксиметил-1-метил-1Н-пиразола, (S)-(-)-4, где R1 представляет собой метил или этил, в кислой среде, чтобы получить рацемическую смесь (
