Магнитные полимерные частицы на основе поливинилового спирта, способ их получения
Авторы патента:
Изобретение относится к магнитным, гранулообразным носителям, которые получают суспендированием содержащей магнитные коллоиды поливинилового спирта - полимерной фазы в органической фазе, которая содержит специальную смесь эмульгаторов. Получают частицы с размером частиц 1 - 8 мкм, которые могут химически связывать лиганды. Носители можно применять для выделения и обнаружения биомолекул, клеток, антител и нуклеиновых кислот. 2 с. и 13 з.п. ф-лы.
Предметом настоящего изобретения являются способы получения грануло- или шарообразных полимерных частиц на основе поливинилового спирта (PVAL), в которых заключен магнитный коллоид, придающий полимерным частицам магнитные свойства и способный связывать биомолекулы или клетки.
Магнитные полимерные частицы применяли в последние годы прежде всего в биохимии и медицине, главным образом, для отделения клеток, протеинов и нуклеиновых кислот. На основании магнитных свойств их можно использовать также как системы переноса для определенных лекарств в определенные области тела. Применение магнитных частиц, с точки зрения практики, дает большие преимущества по сравнению с традиционными системами отделения, так как существующие в большинстве случаев в виде тонких суспензий или эмульсий магнитные частицы можно легко отделять из смеси при помощи магнитных сил. Эта техника отделения делает излишним обычное центрифугирование. Далее, магнитную фракцию можно отделять в течение одной минуты, что, по сравнению с традиционными методами отделения при помощи хроматографической колонки, означает большую экономию времени. При последнем методе оказывают большое влияние прежде всего долговременное достижение равновесия и элюирование, следовательно, процессы, которые в технологии магнитного шарика практически неприемлемы. Другое значительное преимущество, которое отличает технологию магнитного шарика, заключается в кинетике реакции. Для сред наполнителей в колоночной хроматографии возвращаются, как правило, к размеру частиц 50-100 мкм. Однако, так как при таких размерах частиц емкости разделения часто недостаточно, возрастает тенденция по применению частиц с размером < 50 мкм и даже < 10 мкм. Чтобы противостоять высокому давлению, образовавшемуся при прохождении через колонку, такие среды практически не обладают пористостью, поэтому на практике нужно переходить от прозрачных колонок из пластмассы или стекла к устойчивым при сжатии стальным колонкам. Используемые для этого мощные насосные системы являются следующим недостатком современной техники колоночной хроматографии. Этих недостатков, которые, в конечном счете вызваны неудовлетворительной кинетикой превращения, можно полностью избежать, применяя технологию магнитных частиц. Благодаря применению тонкодисперсных PVAL-частиц, которые имеют размер частиц 1-10 мкм, предпочтительно 1-4 мкм, частицы остаются в течение нескольких часов в суспендированном состоянии, так что кинетика превращения соответствует в некотором роде однородному раствору. Вследствие стойкой суспензии можно также в большинстве случаев отказаться от перемешивания или взбалтывания. Способы получения магнитных микрочастиц из декстрана железа описаны в патенте США 4452773. Смешиванием солевого раствора Fe (II)- и Fe (III)- в присутствии определенного количества декстрана и последующим добавлением щелочи получают коллоидные частицы окиси Fe- с размером 30 - 40 нм, на которых адсорбирован декстран. Подобный способ описан в PCT заявке WO 90/07380. Солевые растворы Fe(II)- и Fe(III) - при добавлении декстрана обрабатывают при 40oC и затем титруют при помощи NaOH, в результате чего получают суперпарамагнитные частицы размером 40 - 100 нм. Недостаток обоих способов, принимая во внимание быстрое и простое отделение, заключается в том, что из-за дисперсности частиц отделение можно осуществлять только при помощи высокоградиентного магнитного поля. Это высокоградиентное магнитное поле образовано разделительной колонкой, которая плотно наполнена стальными нитями или веществами из подобных микрочастиц и находится между полюсными наконечниками двух сильных электродов или ручных магнитов. Отделение частиц производят пропусканием суспензии через наполненную разделительную колонку. Отделение таких коллоидов невозможно при помощи традиционных ручных магнитов. Следовательно, принципиальные экспериментальные различия в традиционной технике хроматографии практически отсутствуют. Следующий недостаток известных способов получения заключается в том, что в результате описанных способов получения не получают стандартного размера частиц, такие частицы получают лишь фракционированным магнитным разделением. Кроме этого, затрудняет подтверждение наличия таких магнитных частиц то обстоятельство, что частицы невидимы под световым микроскопом. В другом способе, который описан в патенте США 4070246, магнитные частицы получают взаимодействием п-аминобензойной кислоты и альдегида при добавлении ферромагнитного порошка. Получение определенных гранулообразных частиц, которые требуются для диагностических тестов, при помощи этого способа невозможно. Химическое связывание биомолекул с носителем также невозможно. То же самое действительно также для описанных в патентах США 4106448, 4136683 и 4735796 способах получения магнитных частиц с включенным декстраном для диагностики и для лечения опухолей. В вышеназванных способах также не описано ковалентное связывание биомолекул. В патенте США 4647447 описано получение ферромагнитных частиц для диагностики методом ядерного магнитного резонанса (ЯМР). При этом исходят или из солевых растворов Fe(II)/Fe(III), или непосредственно из ферритов в форме микрочастиц, которые в присутствии комплексообразователя в виде сывороточного альбумина, полисахаридов, декстрана или декстрина подвергают взаимодействию до получения магнитных суспензий. Другие ферромагнитные частицы, которые включены в силановую матрицу, рассматривают в патенте США 4628037. В качестве контрастного вещества для ЯМР-диагностики служат также суперпарамагнитные окиси железа, которые описаны в патенте США 4827945. Осаждением смесей солей Fe(II)/Fe(III) при помощи оснований в присутствии сывороточного альбумина, полипептидов или полисахаридов можно получать покрытые этими веществами магнитные частицы. Связыванием определенных антител с матрицей можно направлять магнитные частицы в определенные области тела (мишени). Получение окисей железа осаждением солей железа в присутствии, например, декстранов или полиглутаровых альдегидов описано в патентах США 2870740 и 4267234. Общим для всех вышеназванных способов и продуктов является то, что ферромагнитные или суперпарамагнитные частицы получают лишь осаждением солевого раствора железа, который предполагает определенное молярное соотношение солей Fe(II) и Fe (III) в присутствии комплексообразователя или покрывающего агента. Описанные частицы имеют более или менее широкое распределение размеров частиц. Определенные грануло- или шарообразные частицы нельзя получить при помощи вышеназванных способов. Описанные средства имеют более или менее аморфную геометрическую структуру. Из-за своей дисперсности, которая лежит всегда в нм-области, они применяются поэтому предпочтительно как контрастные вещества для ЯМР-диагностики или как индикаторы клеток. Кроме того, отделение магнитных фракций при помощи простых ручных магнитов, которые предпочтительны в быстрых диагностических тестах или в разделениях путем аффинной хроматографии, в большинстве случаев невозможны. Получение магнитных микрочастиц альбумина или протеина, которые покрыты определенными связывающими агентами и которые можно применять для разделения вирусов и клеток, а также для диагностических тестов, описаны в патентах США 4345588; 4169804; 4115534; 4230685; 4247406 и 4357259. Магнитные частицы с определенной гранулообразной структурой известны из патентов США 4861705. Предметом вышеназванного патента являются композитные частицы агарозы-полиальдегида, которые получают путем суспендирования полимерной фазы в масляной фазе. Примешиванием феррофлюидов, которые по определению представляют очень тонкие суперпарамагнитные, водные коллоиды окиси железа, к полимерной фазе получают магнитные полимерные частицы с размером частиц 40-1000 мкм. Идеальные шарообразные частицы описаны в патенте США 4654267. Способ, в принципе, отличается от вышеназванных тем, что в качестве матрицы применяют полиакрилаты или полистирол, которые сначала посредством радикальной суспензионной полимеризации полимеризуют до гранулообразных частиц. Затем частицы набухают в органической фазе при определенных условиях. Происходит инкубирование полимерных частиц в солевом растворе Fe(II)/Fe(III), которые затем, после его диффундирования в частицы, окисляют при помощи аммиака до суперпарамагнитных окисей железа. Способ позволяет получить гранулообразные частицы с размерами частиц между 0,5 и 20 мкм. Способ связан с очень высокими техническими затратами. Наряду с применением высокотоксичных веществ затраты времени на получение основной матрицы составляют 10-30 часов. Далее требуются дополнительные нитро-, нитрозо- или аминогруппы, которые на дополнительной стадии получения вводят в полимерную матрицу, чтобы обеспечить достаточную абсорбцию Fe-солей. Основной недостаток описанных там частиц заключается в основном полимере полистироле. Полистирол является исключительно гидрофобным материалом, который при контакте с растворами протеина или другими биомолекулами имеет сильную склонность к неспецифической адсорбции, феномен, который имеет отрицательное значение особенно при иммуноанализах и в аффинной хроматографии. Недостатки вышеназванных способов относительно затрат на получение, геометрии частиц, магнитной способности при разделении, свойств полимерной матрицы или вида способа связывания можно избежать благодаря новому суспензионному "вода в масле" способу. В качестве полимерной матрицы применяют поливиниловый спирт (PVAL), который в виде водного раствора суспендируют и сшивают в органической, не смешиваемой с водой фазе при перемешивании. Примеры для таких органических фаз известны из уровня техники суспензионной полимеризации. Для способа согласно изобретению применяют предпочтительно обычные в торговле растительные масла. Чтобы получать желательные магнитные свойства полимерных частиц, полимерную фазу перед суспензией смешивают с магнитным коллоидом, например, в виде порошков окиси железа или феррожидкостей и затем суспендируют в масляной фазе. Получение гранулообразных частиц PVAL путем суспендирования водного полимерного раствора описано в заявке на патент ФРГ 4127657. Добавлением магнитного порошка к полимерному раствору можно получать магнитные частицы. В описанном способе применяют полимерные растворы и масляные фазы, которые не содержат добавок в виде эмульгаторов или других поверхностно-активных веществ. Этим обусловлено то, что размеры частиц составляют всегда от 50 до 500 мкм. Размеры частиц при вышеназванных способах определяют, в первую очередь, вязкостью органической и/или полимерной фазы. Целью настоящего изобретения являются, напротив, магнитные частицы, которые имеют размер в области 1-10 мкм, предпочтительно между 1-4 мкм, и имеют, кроме того, очень узкое распределение частиц по размерам. Только такие частицы могут применяться для маркировки и разделения клеток, для очистки биовеществ в суспензии, а также для диагностических анализов. Неожиданно оказалось, что такие полимерные частицы можно получать добавлением определенных смесей эмульгаторов к масляной фазе. Понятие эмульгатор относится в последующем, с точки зрения определения как ограничительное понятие для всех поверхностно-активных веществ, к поверхностно-активным веществам, детергентам или стабилизаторам суспензии. Эмульгаторы, которые применяют как добавки для масляной фазы, представляют, например, блок-сополимеры окиси пропилена и окиси этилена, сложные эфиры жирной кислоты и сорбитана, комплексный смешанный сложный эфир из сложного эфира жирной кислоты и пентаэритрита с лимонной кислотой, производные полиэтиленгликоля и касторового масла, блок-сополимеры из производных касторового масла, полиэтиленгликоли, модифицированные сложные полиэфиры, сложные эфиры жирной кислоты и полиоксиэтилена и сорбитана, блок-сополимеры полиоксиэтилена, полиоксипропилена и этилендиамина, производные полиглицерила, производные полиоксиэтилена и спирта, производные алкилфенилполиэтиленгликоля, блоксополимеры полиоксижирной кислоты и полиэтиленгликоля, производные полиэтиленгликолевых эфиров. Вещества этого вида известны, в частности, в продаже под торговыми наименованиями: Плюроник














100 мл 3,5%-ного PVAL-раствора (средняя молярная масса 224.000), в котором растворены 40% 1 н. HCl и 0,015% додецилсульфата натрия, перемешивают с 5 мл феррофлюидов EMG 707 и облучают 1 мин в ультразвуковой ванне. После этого полимерную фазу суспендируют при перемешивании (скорость перемешивания 2000) в 2,3 литра растительного масла, в котором растворены 1% глицерилмоностеарата 83, 1% Плюроник 6100, 0,8% Твин 80 и 2% Дегимула HRE, 10 с. Через 10 с добавляют 6 мл 25%-ного раствора глутарового альдегида; перемешивают дальше 10 с. Через 10 мин суспензию центрифугируют и промывают по примеру 1. Образуются магнитные частицы с распределением размеров частиц 2 - 4 мкм, которые имеют содержание окиси железа 24%. Пример 11
14,5 мл магнитного коллоида по примеру 1 диспергируют в 100 мл полимерной фазы, которая содержит 4% PVAL (средняя молярная масса 224.000) и 0,1% сывороточного альбумина крупного рогатого скота, и одну минуту обрабатывают в ультразвуковой ванне. После этого дисперсию сначала 15 с суспендируют при перемешивании (скорость перемешивания 2000) в 2,5 литра растительного масла, в котором растворены 3,8% Плюроник 3100, 0,8% Плюроник 6200 и 1,5% Тетроник 304. Затем добавляют 7,5 мл 12%-ного раствора глутарового альдегида и еще через 10 с 25 мл 3 н. НCl; перемешивают дальше еще 10 с. Через 10 мин суспензию обрабатывают по примеру 1. Получают магнитные частицы с распределением размера частиц 1 - 2 мкм и с содержанием окиси железа 9,6%. Пример 12
В 1200 мл растительного масла, которое содержит 2,2% глицерилмоностеарата 80, 0,8% Спан 85 и 0,8% Тритона CF 10, суспендируют 10 с при перемешивании (скорость перемешивания 1800) 50 мл полимерной фазы, состоящей из 5% PVAL (средняя молярная масса 224.000), 0,5% полиэтиленгликоля 3350 и 12% феррофлюидов EMG 707. Добавляют с интервалами по 5 с 4 мл 25%-ного раствора глутарового альдегида и 25 мл 1 н. HCl. Продолжают перемешивание 15 с. Через 10 мин центрифугируют и промывают по примеру 1. Получают магнитные частицы, которые имеют распределение размеров частиц 1 - 2 мкм и содержание окиси железа 18,3%. Пример 13
В 100 мл 5%-ного PVAL-раствора (средняя молярная масса 203.000), в котором растворены 0,05% полистиролсульфокислоты и 0,1% поливинилпирролидона, образуют дисперсию с 12 мл коллоида из магнетита и облучают 2 мин в ультразвуковой ванне. Получают суспензию в 2,2 литра растительного масла, состав которого аналогичен примеру 12. Через 10 с с интервалами по 10 с добавляют 8 мл 12%-ного раствора глутарового альдегида и 20 мл 2,5 н. HCl. После соответствующей обработки аналогично примеру 1 получают магнитные частицы с размером 2 - 4 мкм, с содержанием окиси железа 7,5%. Пример 14
6,5 мл феррофлюидов EMG 807 диспергируют в 100 мл полимерной фазы, состоящей из 10% PVAL (средняя молярная масса 88.000), 0,05% ацетат-бутирата целлюлозы и 0,1% поливинилпирролидона, и облучают 3 мин в ультразвуковой ванне. Затем дисперсию суспендируют при перемешивании (скорость перемешивания 2000 об/мин) в 2300 мл растительного масла, которое содержит 1,8% Синпероник L61, 0,2% Тетроник 1101 и 1% Дегимула FCE. Через 10 с добавляют с интервалами по 10 с 8 мл 12%-ного раствора глутарового альдегида, который содержит 20 мол.% этилендиамина, и 23 мл 2,5 н. HCl. Перемешивают дальше 10 с и через 10 мин обрабатывают суспензию аналогично примеру 1. Получают магнитные частицы с распределением размеров частиц 1 - 3 мкм и с содержанием окиси железа 10,4%. Пример 15
300 мг полученных по примеру 1 полимерных частиц суспендируют в 10 мл воды, смешивают с 10 мл 3,5 М NaOH и 15 мл эпихлоргидрина и подвергают взаимодействию 2 часа при 55oC при интенсивном перемешивании. После этого отделяют магнитные частицы при помощи неодим-железо-бор-магнита. Продукт суспендируют приблизительно в 10 мл воды и еще раз отделяют магнитом. Этот процесс промывки/отделения повторяют 10 раз, с последующей однократной промывкой ацетоном. Затем 30 мг активированных таким способом магнитных частиц подвергают взаимодействию при 50oC 2 ч с 2 мл 0,1 М буферного раствора бората, pH 11,4, который содержит 10% гексаметилендиамина. Промывают 10 раз водой. Затем полученный продукт вступает в реакцию в течение 2 ч при 30oC с 2 мл 0,1 М буферного раствора фосфата К, pH 7,0, в котором растворены 12,5% глутарового альдегида. Потом в течение 30 минут промывают сначала 10 раз водой и затем 2 раза 0,1 М буферным раствором фосфата калия, pH 7,5. Добавкой 1 мл 0,1 М буферного раствора фосфата калия, pH 7,5, в котором растворены 0,3 мг стрептавидина, связывают после 12-часовой инкубации при 4 С 0,11 мг стрептавидина с матрицей. С матрицей можно связывать известными методами биотинилированные ДНК-фрагменты, которые применяют для ДНК- последовательностей. Пример 16
30 мг полученных по примеру 15, активированных эпихлоргидрином/гексаметилендиамином/глутаровым альдегидом магнитных частиц подвергают взаимодействию 24 ч при 4oC с 2 мл 0,1 М буферного раствора фосфата калия, pH 7,5, в котором растворены 0,3 мг антиинсулин-антитело. Связывают 0.2.8 мг антитела. Пример 17
60 мг магнитных частиц по примеру 3 обезвоживают последовательной добавкой смесей ацетона/воды 1:3, 1:1, 3:1 (объем/объем) и, наконец, абсолютного ацетона. После этого диспергируют суспензию в 2 мл абсолютного диметилсульфоксида, который содержит 0,1% октоата олова и активируют добавкой 0,5 мл гексаметилендиизоцианата в течение 30 минут при 45oC. После этого промывают 5 раз по очереди с несколькими мл диметилсульфоксида и ацетона. 30 мг активированной фракции превращают 4 часа при 30oC с 1 мл абсолютного диметилсульфоксида, в котором растворены 20% полиэтиленгликоля 400 и 0,05% DABCO. Промывают 1 раз диметилсульфоксидом и 5 раз водой и снова обезвоживают фракцию вышеуказанными смесями ацетона/воды. Связанную полиэтиленгликолем фракцию подвергают взаимодействию затем 45 минут при комнатной температуре с 1 мл диметилсульфоксида, в котором растворены 6 ммоль 4-диметиламинопиридина и 5 ммоль 2-фтор-метил-пиридин-толуол-сульфоната. Проводят 5-кратную по очереди промывку диметилсульфоксидом и ацетоном. Затем активированный продукт связывают при 4oC инкубацией с раствором антитироксин-антитела (0,25 мг антитела/мл, 0,05 М буферного раствора фосфата K, pH 7,5). Связывают 0,23 мкг антитела. После многократной промывки буферным раствором для связывания остаточные активные группы дезактивируют 4-часовым инкубированием при помощи 0,1 М трис-HCl-буферного раствора, содержащего 20 ммоль меркаптоэтанола, pH 8,5. Затем магнитные частицы промывают при помощи PBS-буферного раствора. Связанные магнитные частицы применяют известными способами для определения тироксина. Пример 18
30 мг активированной по примеру 17 при помощи гексаметилендиизоцианата фракции смешивают 5 ч с 2 мл 0,3 КОН/MeOH - раствора 1:1 (объем/объем). Через 5 ч реакции при комнатной температуре промывают несколько раз водой. Затем содержащую аминогруппы фракцию активируют по примеру 15 при помощи глутарового альдегида. Проводят многократную промывку водой с интервалом 30 мин, 20-часовым инкубированием при 4oC с 1 мл буферным раствором фосфата К, pH 7,5, в котором растворены 0,35 мг антимышиного IgG, связывают 0,28 мг IgG. Связанный продукт применяют известными способами для разделения клеток. Пример 19
30 мг магнитных частиц по примеру 10 при 0oC смешивают с 4 мл воды, в которой растворены 100 мл BrCN. Добавкой 2 н NaOH устанавливают pH до 11,5. Реакцию заканчивают через 5 минут магнитным отделением магнитной фракции. Проводят 4-кратную промывку ледяной водой. После этого дополнительно промывают один раз при помощи 0,01 н. HCl и 0,1 М буферного раствора бикарбоната, pH 8,2. 1 мл 0,1 М буферного раствора бикарбоната, pH 8,2, в котором растворены 0,2 мг анти-CD4 антител, инкубируют с активированными магнитными шариками 12 ч при 4oC. Дополнительно промывают несколько раз при помощи PBS-буферного раствора, pH 7,2, который содержит 0,5 М NaCl и 0,1% Тритона X100. Получают носитель, с которым связано 0,18 мг антител. Полученные носители применяют для выделения T-клеток-помощников. Пример 20
30 мг магнитных клеток по примеру 5 активируют аналогично примеру 19 при помощи BrCN. Связывание гепарина (молярная масса 6000) производят 12-часовым инкубированием 1 мл буферного раствора бикарбоната, pH 8,2, который содержит 0,5 мг растворенного гепарина. После этого инкубируют 2 ч при комнатной температуре при помощи 0,1 М раствора этаноламина, pH 8,0, и затем 4 раза промывают при помощи 0,1 М буферного раствора ацетата, pH 4. Полученную фракцию применяют известными способами для отделения антитромбина III. Пример 21
30 мг магнитных частиц по примеру 4 обезвоживают последовательной добавкой смесей ацетона/воды, как описано выше. По 1 мл диметилсульфоксила, в котором растворены 6 ммоль 4-диметиламино-пиридина и 5 ммоль 2-фтор-метил-пиридин-толуол- сульфоната инкубируют с магнитными шариками 45 мин при комнатной температуре. После этого промывали по 5 раз по очереди ацетоном и диметилсульфоксидом и 1 раз 0,05 М буферным раствором фосфата К, pH 7,5. Потом добавляли 1 мл 0,05 буферного раствора фосфата К, pH 7,5, который содержит 0,3 мг протеина A. Связывание проводят в течение 12 ч при комнатной температуре. Проводят многократную промывку PBS-буферным раствором, в котором растворены 0,5% NaCl и 0,1% тритона X100. Связывают 0,27 мг протеина. Магнитную фракцию используют для отделения IgG-подклассов аналогично известным метолам. Пример 22
30 мг фракции магнитных частиц по примеру 12 промывают один раз 2 мл 0,5 М буферного раствора карбоната, pH 11. Последующее активирование при помощи 100 мкл дивинилсульфона осуществляют при добавке 1 мл промывочного буферного раствора в течение 70 мин при комнатной температуре. Проводят многократную промывку водой в течение 30 мин. 1 мл буферного раствора карбоната, pH 10, который содержит 10% лактозы, инкубируют 20 ч при комнатной температуре при помощи фракции магнитных шариков. Связывают 0,68 мг лактозы. Носитель применяют для очистки пектинов из экстрактов омелы известными способами. Пример 23
30 мг магнитных частиц по примеру 7, которые активируют аналогично примеру 15 при помощи эпихлоргидрина, превращают 16 часов при комнатной температуре с 0,3 М гидразидом адипиновой кислоты в 0,2 М буферном растворе карбоната, pH 9, до производного гидразида. Промывают несколько раз 0,1 М буферным раствором трис-HCl, pH 8,5. Остаточные группы оксирана дезактивируют 4-часовым инкубированием с промывочным буферным раствором, содержащим 0,3 М раствор меркаптоэтанола. Промывают 3 мл 0,1 М буферного раствора ацетата Na, pH 5,5. 1 мл промывочного буферного раствора, в котором растворены 0,3 мг анти-HGH и 10 ммоль м-периодата Na, инкубируют при исключении света 40 мин при 4oC. Осуществляют 5-кратную промывку буферным раствором ацетата Na и 2 раза PBS-буферным раствором. Связывают 0,21 мг антител. Связанный носитель применяют для определения HGH. Пример 24
30 мг магнитных частиц по примеру 9 суспендируют в воде и отделяют ручным магнитом. Отделенную фракцию инкубируют 15 минут при комнатной температуре в 0,5 мл 0,1 М азотной кислоты, которая содержит 0,1 М Cer (IV)-нитрата аммония. После этого магнитные частицы отделяют магнитом и промывают один раз водой. Затем фракцию приводят в реакцию в течение 15 минут при 50oC добавкой 0,5 мл акриловой кислоты и 0,5 мл н-гексана. Промывают 10 раз водой в течение 30 мин. Выход прививки составляет 85%. Привитую фракцию активируют 30 мин при комнатной температуре при помощи 1 мл 0,1 М MOPS-буферного раствора (3-морфолино-пропансульфокислоты), pH 7,5, который содержит 5% N-циклогексил-N'-(2-морфолиноэтил)-карбодиимид-метил-п-толуолсульфоната. Промывают 5 раз ледяной водой и добавляют 0,3 мг анти-LDL- антитела, растворенного в 1 мл MOPS-буферного раствора, pH 7,5. Время реакции 24 часа при 4oC. После этого носитель дезактивируют 4-часовым инкубированием с 5 мл 5 мМ этаноламина/0,1 М трис-HCl-буферного раствора, pH 8,5. Связывают 0,25 мг антитела. Связанную матрицу применяют для удаления LDL (липопротеина низкой плотности) из биологических жидкостей. Пример 25
30 мг магнитных частиц по примеру 3 прививают аналогично примеру 24 акриловой кислотой. 100 мкг олиго(dT)20 замещают соответственно методике, описанной в ДНК, т. 4, 1988, 327, этилендиамином на 5'-конце. NH2-модифицированный олигонуклеотид растворяют в 1 мл 0,1 М буферного раствора имидазола, pH 7,0 и инкубируют с фракцией магнитных частиц 20 ч при комнатной температуре. После этого несколько раз промывают буферным раствором имидазола, который содержит 0,1% Тритона X100. Связывают 38 мкг олигонуклеотида. Полученные магнитные частицы применяют для выделения мРНК известными способами. Пример 26
100 мг магнитных частиц по примеру 9 прежде всего обезвоживают при помощи смесей ацетона/воды по вышеупомянутому предписанию. Проводят активирование с помощью гексаметилендиизоцианата по примеру 17. 2 мл диметилсульфоксида, в котором растворены 0,1% октоата олова и 30 мг м-аминофенилбороновой кислоты, инкубируют с активированными частицами 6 ч при 30oC. После этого промывают несколько раз водой. Связанные бороновой кислотой магнитные частицы применяют для определения гликированного гемоглобина в крови известными способами. Пример 27
30 мг магнитных частиц соответственно примеру 14 перемешивают с 2 мл воды, в которой растворены 50 мг Цибакрона голубого F3G-A, и нагревают 30 мин при 60oC. После этого добавляют 1 мл 25%-ного раствора NaCl и нагревают еще 1 час до 75oC. После добавки 1 мл 10%-ного раствора карбоната Na нагревают еще 2 ч при 70oC. Проводят многочасовую промывку водой. Полученную матрицу применяют для отделения спиртовой дегидрогеназы известными способами.
Формула изобретения
Похожие патенты:
Способ агглютинации частиц для одновременного исследования нескольких аналитов в одном образце // 2111488
Изобретение относится к стабильному кинетическому способу одновременного определения присутствия нескольких аналитов в одном образце среды на основе агглютинаци частиц
Изобретение относится к области микробиологии, а именно к получению препарата, необходимого для проведения иммунологического анализа с целью индикации возбудителя коклюша
Изобретение относится к производству строительных материалов, а именно к составам для изготовления теплоизоляционных материалов
Изобретение относится к химической технологии, а именно к прокладочным материалам, которые могут быть использованы в автомобильной, тракторной, нефтехимической и нефтеперерабатывающей промышленности, а также в качестве прокладочного материала общего назначения
Способ получения геля поливинилового спирта // 2070901
Изобретение относится к способам регулирования физико-механических свойств полимерных гелей, конкретно к способу получения упрочненных криогелей, т
Изобретение относится к разработке композиции для изготовления прокладочных материалов, применяемых для уплотнения плоских разъемов агрегатов, контактирующих с различными агрессивными средами
Охлаждающий материал // 2026872
Изобретение относится к области аккумулирующих и удерживающих холод материалов, предназначенных для создания малогабаритных автономных источников холода, используемых в быту, технике и медицине
Изобретение относится к полимерным композициям для получения мембран и может быть использовано в диализаторах типа "искусственная почка", в химической промышленности при мембранных методах разделения смесей
Полимерная композиция // 1810364
Композиция для получения пористого материала // 1776675
Композиция для получения пористого материала // 1776674
Производные полиоснования // 2051156
Изобретение относится к ветеринарии и иммунологии, а именно, к биологически активным соединениям, проявляющим иммуностимулирующую активность
Изобретение относится к способам очистки внутренней поверхности нефтепровода от парафиносмолистых отложений водными растворами сшитого полиакриламида (ПАА) и может быть использовано в технологии нефтепроводного транспорта
Изобретение относится к созданию гелеобразных полимерных поршнейразделителей на основе полиакриламида (ПАА) и может быть использовано в трубопроводном транспорте жидкостей
Способ получения поливинилформальэтилаля // 431186
Способ модификации полиакролеина // 430118
Патент 418487 // 418487