Изобретение относится к получению дизельного топлива из нефтей с различным содержанием серы. Нефть подвергают электрообессоливанию и обезвоживанию в электродегидраторах с системой сетчато, и/или ячеисто расположенных электродов, с последующей атмосферной и/или атмосферно-вакуумной перегонкой обессоленной нефти в колоннах атмосферной перегонки, снабженных пакетами перекрестно-точных насадок, размещенными с высотным или высотно-угловым смещением адекватно температурным зонам конденсации паров. При этом осуществляют вывод дизельной фракции с температурой кипения 240-350°С или разделенной дизельной фракции 240-300°С и 300-350°С с последующим защелачиванием полученных дизельных фракций и их компаундированием с соответствующими фракциями. В качестве теплоносителя используют пар, получаемый в парогенераторах путем нагрева воды за счет сжигания в последних газообразного и/или жидкого топлива. Образующийся конденсат, по крайней мере, частично рециркулирует в системе. Пар-теплоноситель, по крайней мере, частично получают при перегреве воды за счет сжигания содержащегося в нефти попутного газа и/или газа, образующегося за счет термодеструктивных процессов нефтепереработки. Газ подают в сеть с температурой 50-70°С и давлением 3-5 кг/см2, подогревают его до температуры не ниже 100°С и 60-85% подают на сжигание для получения пара в технологических процессах, а 15-40% газа подают на сжигание в парогенератор. Нагретую химически очищенную сырую воду добавляют в количестве, необходимом для возмещения потерь конденсата. Для подогрева сырой воды и/или исходной нефти используют также остаточную теплоту отработанного пара. В результате увеличивается глубина переработки нефти, повышается выход дизельных фракций с высокими эксплуатационными показателями, а также снижается расход пара-теплоносителя за счет рекуперации тепла парового конденсата и отводимых технологических потоков. 16 з.п. ф-лы, 1 табл.
Изобретение относится к нефтепереработке, конкретно к получению дизельного топлива из нефтей с различным содержанием серы.
Наиболее близким к изобретению по своей сущности и достигаемому результату является способ получения дизельного топлива из малосернистых, и/или сернистых, и/или высокосернистых нефтей, включающий термические и термодеструктивные технологические процессы электрообессоливания и обезвоживания нефти в электродегидраторах с системой сетчато, и/или ячеисто не менее чем в двух уровнях расположенных электродов, перекрывающих в совокупности высотный диапазон электродегидратора преимущественно в верхней половине высоты его корпуса, причем градиент высоты между уровнями электродов на пути восходящего потока нефти составляет 0,05 - 0,1 условного отрезка пути, совпадающего со средним вектором перемещения потока нефти в зоне наибольшего миделя электродегидратора, проходимого потоком за час перемещения со средней скоростью процесса обессоливания, атмосферной и/или атмосферно-вакуумной перегонки обессоленной нефти с использованием колонн атмосферной перегонки, снабженных пакетами перекрестно-точных насадок, размещенными с высотным или высотно-угловым смещением адекватно температурным зонам конденсации паров, при этом, по крайней мере, часть пакетов размещают в зоне конденсации дизельной фракции и перегонку проводят при подаче нефти в колонны, по крайней мере, через два патрубка, тангенциально расположенные в корпусе колонны в зоне питания, снабженной внутренним цилиндрический отражателем потока, диаметр которого соотносится с диаметром корпуса колонны в зоне питания как (0,59 - 0,75): 1, а высотный диапазон ввода потоков нефти принимают равным (0,21 - 0,28) высоты колонны от отметки низа днища, вывод дизельной фракции с температурой кипения 240 - 350
oC или разделенной дизельной фракции 240 - 390
oC и 300 - 350
oC ведут в высотном интервале колонны первичной разгонки, составляющем (0,32 - 0,62), считая от низа днища колонны или с превышением соответственно нижней и верхней отметки диапазона вывода на величину (0,06 - 0,12) и (0,23 - 0,41) от высоты колонны относительно оси ввода патрубков, подающих нефть в зону питания колонны, защелачивания полученных дизельных фракций с последующим компаундированием соответствующих фракций с подачей, по крайней мере, в электродегидраторы, колонны атмосферной и/или атмосферно-вакуумной перегонки и реакторы гидроочистки технологической теплоты, в том числе с использованием в качестве теплоносителя пара, получаемого в парогенераторах путем нагрева воды за счет сжигания в последних, по крайней мере, газообразного и/или жидкого топлива и образованием конденсата, по крайней мере, частично возвратного, в результате отбора теплоты при протекании технологических процессов перегонки нефти (см., например, RU 2075500 C1, 20.03.97).
Недостатками известных способов являются высокая себестоимость вследствие необходимости приобретения необходимого в ряде технологических процессов пара на стороне, а также большие потери тепла вследствие сжигания значительного количества топливных газов на факеле, что обуславливает дополнительно и ухудшение экологической обстановки в регионе.
Задачей настоящего изобретения является повышение экономичности и одновременной более глубокой переработки нефти, увеличение выхода продукции и улучшение экологической обстановки в регионе.
Задача решается за счет того, что в способе получения дизельного топлива из малосернистых, и/или сернистых, и/или высокосернистых нефтей, включающем термические и термодеструктивные технологические процессы электрообессоливания и обезвоживания нефти в электродегидраторах с системой сетчато, и/или ячеисто не менее чем в двух уровнях расположенных электродов, перекрывающих в совокупности высотный диапазон электродегидратора преимущественно в верхней половине высоты его корпуса, причем градиент высоты между уровнями электродов на пути восходящего потока нефти составляет 0,05 - 0,1 условного отрезка пути, совпадающего со средним вектором перемещения потока нефти в зоне наибольшего миделя электродегидратора, проходимого потоком за час перемещения со средней скоростью процесса обессоливания, атмосферной и/или атмосферно-вакуумной перегонки обессоленной нефти с использованием колонн атмосферной перегонки, снабженных пакетами перекрестно-точных насадок, размещенными с высотным или высотно-угловым смещением адекватно температурным зонам конденсации паров, при этом, по крайней мере, часть пакетов размещают в зоне конденсации дизельной фракции и перегонку проводят при подаче нефти в колонны, по крайней мере, через два патрубка, тангенциально расположенных в корпусе колонны в зоне питания, снабженной внутренним цилиндрическим отражателем потока, диаметр которого соотносится с диаметром корпуса колонны в зоне питания как (0,59 - 0,75):1, а высотный диапазон ввода потоков нефти принимают равным (0,21 - 0,28) высоты колонны от отметки низа днища, вывод дизельной фракции с температурой кипения 240 - 350
oC или разделенной дизельной фракции 240 - 300
oC и 300 - 350
oC ведут в высотном интервале колонны первичной разгонки, составляющем (0,32 - 0,62), считая от низа днища колонны или с превышением соответственно нижней и верхней отметки диапазона вывода на величину (0,06 - 0,12) и (0,23 - 0,41) от высоты колонны относительно оси ввода патрубков, подающих нефть в зону питания колонны, защелачивания полученных дизельных фракций с последующим компаундированием соответствующих фракций с подачей, по крайней мере, в электродегидраторы, колонны атмосферной и/или атмосферно-вакуумной перегонки и реакторы гидроочистки технологической теплоты, в том числе с использованием в качестве теплоносителя пара, получаемого в парогенераторах путем нагрева воды за счет сжигания в последних, по крайней мере, газообразного и/или жидкого топлива и образованием конденсата, по крайней мере, частично возвратного, в результате отбора теплоты при протекании технологических процессов перегонки нефти, согласно изобретению используемый в технологических процессах пар, по крайней мере, частично получают путем сжигания содержащегося в нефти попутного газа и/или технологического газа термических процессов, и/или термодеструктивных процессов, и/или промежуточных продуктов, который подают в сеть с температурой 50 - 70
oC и давлением 3 - 5 кг/см
2 подогревают его до температуры не ниже 100
oC и 60 - 85% подают на сжигание для получения пара в технологических процессах, а 15 - 40% газа подают на сжигание в парогенераторе для получения пара нагреванием возвратного парового конденсата с добавлением нагретой химически очищенной сырой воды в количестве, необходимом для возмещения невозвращаемого конденсата и для подогрева химически очищенной сырой воды и/или исходной нефти используют остаточную теплоту отработанного в технологических процессах перегонки нефти пара, и/или парового конденсата.
При этом электрообессоливание и обезвоживание нефти могут проводить в электродегидраторах с горизонтально-ориентированным корпусом цилиндрической или составной конфигурации и рабочим объемом 80 - 200 м
3 или электрообессоливание и обезвоживание нефти проводят в электродегидраторах с корпусом сферической, или сфероидальной, и/или эллипсовидной, и/или овоидальной, и/или каплевидной формы, или электрообессоливание и обезвоживание нефти производят в электродегидраторах сфероидальной, и/или эллипсоидальной, и/или овоидальной, и/или каплевидной, и/или составной с цилиндрическом корпусом и выпукло-криволинейными торцовыми участками, и/или тороидальной формы, или электрообессоливание нефти проводят в электродегидраторах, продольную ось корпуса, по крайней мере, части которых ориентируют вертикально, или горизонтально, или под углом к горизонту.
Подачу нефти в колонны атмосферной и/или атмосферно-вакуумной перегонки могут осуществлять через патрубки, расположенные с углом разведения точек пересечения осей патрубков с корпусом колонны в интервале 30 - 180
oC с односторонней тангенциальной закруткой подаваемого потока, или подачу нефти в колонну атмосферной и/или атмосферно-вакуумной перегонки осуществляют через патрубки, ось и внутренняя горловина одного из которых ориентируют поток подаваемой через него нефти в зоне питания колонны непосредственно на пересечение с аналогичным потоком, подаваемым через другой патрубок преимущественно в зоне выхода его из внутренней горловины последнего, или подачу нефти в колонну атмосферной и/или атмосферно-вакуумной перегонки осуществляют через патрубки, оси которых ориентируют параллельно касательным к корпусу внутреннего цилиндрического отражателя и радиально удалены от условной точки касания с корпусом отражателя на расстояние b, удовлетворяющее условию b

0,25 (R
k - R
о), где R
k - радиус колонны в зоне питания, R
о - радиус отражателя, или нефть вводят в колонну через патрубки, врезанные в корпус колонны параллельно с разведением их осей на расстояние 0,5 - 0,85 диаметра колонны в зоне питания.
Перегонку могут проводить в колонне, цилиндрический отражатель в зоне питания которой устанавливают эксцентриситетно продольной оси колонны, или перегонку проводят в колонне атмосферной и/или атмосферно-вакуумной перегонки, цилиндрический отражатель которой выполняют с переменным радиусом кривизны в поперечном сечении, или перегонку проводят в колонне атмосферной и/или атмосферно-вакуумной перегонки, цилиндрический отражатель которой соединяют с корпусом колонны кольцевой мембраной плоской и/или ломаной, и/или криволинейной, и/или комбинированной конфигурации в поперечном сечении, перегонку проводят в колонне, отражатель потока нефти которой выполняют в виде двухлепестковой симметричной оболочки переменной кривизны или составной конфигурации, по крайней мере, в поперечном сечении, или при перегонке используют колонну атмосферной и/или атмосферно-вакуумной перегонки, снабженную пакетами перекрестно-точных насадок, которые выполняют из пространственно деформированных элементов из листовой нержавеющей стали, с обеспечением перекрытия высотой пакетов температурных градиентов 2 - 8
oC по высоте колонны, и площади прохода паров через них, составляющей 38 - 81% относительно поперечного сечения колонны; перегонку в колонне атмосферной и/или атмосферно-вакуумной перегонки проводят при скорости прохождения паров разгоняемых фракций, по крайней мере, равной 1,0 - -1,7 м/сек.
При защелачивании могут использовать 3,0 - 5,0% раствора едкого натра с подачей дизельной фракции не менее чем в два реактора параллельными потоками, обработку дизельной фракции раствором едкого натра проводят постадийно, при этом первую стадию осуществляют инжектированием через инжектор, установленный вне реактора защелачивания при соотношении объемов дизельной фракции и едкого натра, равном 0,5 - 2,0, и полученную смесь вводят в придонный слой раствора едкого натра и проводят вторую стадию с использованием маточника, состоящего из раздаточного коллектора, снабженного системой распределительных труб с избирательной системой перфорации, при заполнении раствором едкого натра объема реактора на (0,5 - 0,75) его высоты и скорости ввода дизельной фракции, равной 0,6 - 7,9 м/с, причем подачу смеси дизельной фракции с раствором щелочи в реактор защелачивания ведут импульсами, при этом при защелачивании высокосернистых фракций используют 3,0 - 5,0% раствора едкого натра при подаче дизельной фракции не менее чем в два реактора параллельными потоками, или при защелачивании используют, по крайней мере, один реактор с подачей дизельной фракции через внешний инжектор, выходное сопло которого устанавливают с отрицательным перепадом высоты сопла на высоту не менее 1 м относительно нижней отметки щелочного раствора в реакторе защелачивания, или при защелачивании используют, по крайней мере, один реактор с распределительными трубами, подающими дизельную фракцию, которые размещают на высоте 0,05 - 0,75 от высоты раствора едкого натра, или при защелачивании используют, по крайней мере, один реактор, в котором перфорационные отверстия в раздаточных трубах маточника выполняют с переменным шагом и/или диаметром, и/или с эффективной площадью истечения потока с возрастанием перечисленных параметров по мере удаления от зоны ввода раздаточного коллектора в резервуар защелачивания адекватно падению гидравлического давления в элементах системы ввода дизельного дистиллята, или при защелачивании используют, по крайней мере, один реактор, в котором, по крайней мере, часть перфорационных отверстий ориентируют на ось истечения потока по сторонам горизонта, или при защелачивании используют, по крайней мере, один реактор, в котором, по крайней мере, часть перфорационных отверстий распределительных труб ориентируют под нисходящими углами к горизонту, или при защелачивании используют, по крайней мере, один реактор, в котором, по крайней мере, часть перфорационных отверстий располагают по спирали с постоянным или переменным шагом, при этом перфорационные отверстия, по крайней мере, частично выполняют круглоцилиндрическими, и/или овоидальными, и/или комбинированных конфигураций, или щелевидными, или при защелачивании используют, по крайней мере, один реактор, в котором раздаточный коллектор маточника выполняют в виде трубы переменного сечения по длине реакторе защелачивания, а подачу смеси дизельной фракции и раствора щелочи в реактор защелачивания ведут с переменной скоростью в различных зонах реактора, или при защелачивании используют, по крайней мере, один реактор защелачивания, в котором колебание высоты слоя жидкости при вводе-выводе дизельной фракции выдерживают в пределах 16 - 20% от исходного уровня раствора едкого натра в реакторе к моменту начала процесса защелачивания, или при защелачивании используют, по крайней мере, один реактор защелачивания, который выполняют горизонтальным с круглоцилиндрическим, или эллипсоидальным, или овоидальным, или каплевидным поперечным сечением, или при защелачивании используют, по крайней мере, один реактор защелачивания, который выполняют с ломаной, или криволинейной осью в плане, или тороидальным в виде замкнутого или разомкнутого тора, или при защелачивании используют, по крайней мере, один реактор, который выполняют с наклоном к горизонту или не менее чем с одним изломом продольной оси в вертикальной плоскости, или при защелачивании используют, по крайней мере, один реактор защелачивания, который снабжают экраном, горизонтально ориентированным или наклоненным, открытым, по крайней мере, с одного торца, погруженным в пределах верхней трети в защелоченную фракцию, или при защелачивании используют, по крайней мере, один реактор защелачивания и/или резервуар- отстойник, который выполняют с большей осью поперечного сечения, ориентированной вертикально или наклонно, при этом после защелачивания обработанную раствором щелочи дизельную фракцию выводят из верхней зоны реактора защелачивания и подвергают водной отмывке и/или отстою в емкости для водной отмывки, и/или в резервуаре-отстойнике, причем при водной отмывке используют не менее одного дополнительного резервуара-отстойника последовательно сообщенного с первым, или при отстое используют, по крайней мере, один резервуар-отстойник, который выполняют горизонтально или полого наклоненным с круглоцилиндрическим или эллипсоидальным поперечным сечением, или при отстое используют, по крайней мере, один резервуар-отстойник, который выполняют с ломаной или криволинейной осью в плане, или тороидальным в виде замкнутого или разомкнутого тора, или при отстое используют, по крайней мере, один резервуар- отстойник, который снабжают экраном-перегородкой, открытым с одного торца, погруженным в приповерхностный слой дизельной фракции, горизонтально ориентированным или наклоненным и/или вертикальным, или при отстое используют, по крайней мере, один резервуар-отстойник, который не менее чем двумя парами электродов, интенсифицирующими осаждение взвесей и примесей из дизельной фракции, а очищенную в реакторе защелачивания дизельную фракцию подают в не менее чем один резервуар-отстойник, выдерживают в нем не менее 50 - 80 мин и направляют на компаундирование.
Компаундирование дизельной фракции могут проводить в одну или две, или три стадии, при этом компаундирование на первой стадии проводят либо непосредственно в колонне атмосферной и/или атмосферно-вакуумной перегонки путем добавления в дизельную фракцию первого потока прямогонной керосиновой фракции и/или в технологическом трубопроводе, соединяющем колонну атмосферной и/или атмосферно-вакуумной перегонки с реактором защелачивания путем подачи прямогонной керосиновой фракции, компаундирование на второй стадии проводят после защелачивания дизельной фракции непосредственно в резервуаре хранения дизельного топлива путем подачи прямогонной и/или гидроочищенной керосиновой фракции под избыточным давлением в зону, расположенную в нижней четверти высоты резервуара, преимущественно, с наклоном струи, направленной к днищу резервуара под углом не менее 30
o к горизонту, причем при компаундировании в технологическом трубопроводе подачу керосиновой фракции и/или вакуумного соляра ведут поэтапно или дискретно не менее чем через два патрубка, врезанных в основной трубопровод с различных сторон, и/или разнесенных по длине и ориентированных под острым углом по ходу смешиваемых дистиллятов, или при компаундировании используют патрубки для ввода компонентов, подмешиваемых к дизельной фракции, врезанные в основной трубопровод и обеспечивающие однонаправленную или встречнонаправленную тангенциально вихревую закрутку смешиваемых потоков, или при компаундировании в трубопроводе во внутреннем сечении его на участке компаундирования первой стадии непосредственно после зоны врезки патрубков, подающих подмешиваемые к дизельной фракции керосиновой и/или вакуумно-соляровые компоненты, устанавливают не менее одной зафиксированной крыльчатки, или при компаундировании в трубопроводе, во внутреннем сечении его устанавливают не менее двух крыльчаток со встречно-направленной закруткой лопастей, зафиксированных относительно корпуса трубопровода или неподвижно зафиксированных одна относительно другой с возможностью свободного совместного вращения при возникновении дисбаланса, создаваемых или вихревых противотоков, интенсифицирующих процесс компаундирования дизельного дистиллята, причем при выводе дизельной фракции из колонны атмосферной и/или атмосферно-вакуумной перегонки отбор избыточной результирующей теплоты ведут преимущественно перед началом первой стадии компаундирования; вторую стадию компаундирования ведут в резервуаре хранения дизельного топлива путем прямого смешивания подаваемых в резервуар потоков дизельной фракции и керосиновой фракции, либо через инжектор, вводимый в придонную зону резервуара при раздельной во времени подаче дизельной фракции и керосиновой фракции, или на второй стадии компаундирования используют инжектор, введенный в резервуар и зафиксированный на жестком внутреннем патрубке в нижней трети центральной зоны резервуара с восходящим наклоном инжектируемого потока; на первой стадии компаундирования в дизельную фракцию и/или в ее смесь с прямогонной керосиновой фракцией добавляют вакуумный соляр, выводимый из вакуумной колонны атмосферно-вакуумной перегонки, а на второй стадии компаундирования используют резервуар, инжектор в который вводят посредством тангенциально установленного патрубка, или компаундирование в резервуаре хранения дизельного топлива проводят посредством, по крайней мере, двух инжекторов, которые фиксируют на тангенциально установленных патрубках со встречной закруткой потоков, или компаундирование в резервуаре хранения дизельного топлива проводят посредством не менее двух инжекторов, подвижно с возможностью реактивного вращения, установленных в нижней или придонной части резервуара хранения дизельного топлива.
Могут использовать сырую воду из проточного и/или непроточного водоема, причем нагрев химически очищаемой воды, производят до или после выполнения очистки сырой воды от взвесей и после очистки возвратного парового конденсата от масляных загрязнений.
Могут использовать воду, например, из реки Урал с общей жесткостью 4,8 мг-экв/кг, общей щелочностью 3,4 мг-экв/кг, величиной pH 8,1 и содержанием железа 628 мг/кг, сульфатов (SO
4-2) 1,78 мг-экв/кг, кремниевой кислоты 0,15 мг-экв/кг, кальция (Ca
+2) 3,0 мг-экв/кг, магния (Mg
+2) 1,8 мг-экв/кг, и окисляемостью пермонганатной 3,84 - 5,12 мг/кг по O
2, причем сырую воду на химическую очистку подают под давлением до 5 кг/см
2 на насосы сырой воды, по крайней мере, один из которых оставляют резервным, а затем прокачивают воду через два теплообменника с неподвижными трубчатыми решетками и подогревают воду до температуры 25 - 30
oC, причем, по крайней мере, в одном теплообменнике используют возвратный конденсат с температурой 80 - 85
oC, при этом количество сырой воды, пропускаемой через этот теплообменник, регулируют до захолаживания конденсата до температуры 25 - 35
oC, а остальную часть сырой воды пропускают через другой теплообменник и нагревают ее до температуры 25 - 30
oC за счет использования в этом теплообменнике в качестве теплоносителя теплофикационной воды, имеющей температуру отопительной воды в соответствии с сезоном, а после подогрева воду направляют на фильтрование в механические фильтры с двухслойной загрузкой кварцевым песком и антрацитом и осуществляют удаление из воды взвешенных частиц до достижения водой прозрачности не менее 40 см, а затем осветленную воду подают на фильтры водород-катионитовые, загруженные сульфоуглем и осуществляют удаление из воды солей жесткости до 1 - 2 мг-экв/кг постоянной и разрушение бикарбонат иона со снижением только карбонатной щелочности до 0,7 мг-экв/кг, после чего умягченную воду подают на предохраняющие фильтрат от проскоков кислотности буферные саморегулирующиеся фильтры, загруженные сульфоуглем, а затем воду направляют для удаления свободной углекислоты в декарбонизатор, загруженный кольцами Рашига, и осуществляют отделение воздуха с углекислым газом, который отводят в атмосферу, и подачу декарбонизированной воды самотеком в бак, после чего эту воду насосами прокачивают через двухступенчатые натрий-катионитовые фильтры, причем в фильтрах первой ступени производят удаление катионов жесткости до 0,1 мг- экв/кг, а во второй ступени осуществляют удаление катионов жесткости Ca
+2, Mg
+2 до 0,01 мг-экв/кг с получением химически очищенной воды прозрачностью не менее 40 см, общей жесткостью 2-5 мг-экв/кг, содержанием железа в пересчете на Fe
+3 до 300 мг/кг и величиной pH 8,0, после чего химически очищенную воду подают в баки, а затем насосами откачивают в парогенератор.
По крайней мере, в период паводка могут осуществлять предварительную очистку воды, которую производят с использованием не менее двух осветлителей производительностью 250 м
3/час, двух мешалок известкового молока емкостью 15 м
3 каждая, двух мерников коагулянта по 10 м
3 каждый, ячейки мокрого хранения извести, преимущественно известкового теста емкостью 100 м
3, ячейки известкового молока емкостью 60 м
3 и насосов-дозаторов и/или центробежных насосов с дополнительными регулирующими заслонками, а химическую очистку воды производят только с использованием натрий-катионитовых фильтров, в которых производят также регенерацию фильтрующего материала солевым раствором с концентрацией 6 - 8%.
Для химической очистки воды могут использовать механические фильтры в виде цилиндрических сосудов с внутренним антикоррозионным покрытием, преимущественно из эпоксидной смолы, с двумя стальными днищами сферической формы, в верхнем из которых размещен штуцер подачи исходной воды и верхнее распределительное устройство в виде лучей из полимерного материала для распределения воды по сечению фильтра, а на нижнем днище расположена дренажная система в виде коллектора со щелевыми трубками из нержавеющей стали, по оси которых образованы отверстия, перекрываемые кожухами со щелями шириной 0,25 - 0,4 мм, причем в верхней части корпуса фильтра образован люк для осмотра поверхности фильтрующего материала, а в нижней - лаз для монтажа и ремонта верхней и нижней дренажных систем, при этом на корпусе фильтра на уровне щелевых трубок расположен штуцер для гидроперегрузки, к фильтру подведены трубопроводы исходной воды, взрыхления, воздушник верхней и нижней дренажных систем, подсоединены манометры на входе и выходе коллектора, пробоотборники и вентили, а фильтрующую засыпку выполняют двухслойной, состоящей из слоя кварцевого песка высотой 700 мм и объемом 6,4 м
3 и слоя антрацита высотой 500 мм и объемом 4,6 м
3, при этом производительность фильтров устанавливают с учетом расхода воды на собственные нужды и приготовление регенерационных растворов не менее 200 м
3/час, скорость фильтрования при работе всех фильтров - не менее 7 м/час и максимальной во время взрыхляющей промывки - не менее 10 м/час при расходе на взрыхление сжатого воздуха 5 м
3/час и давлении до 1,5 кгс/см
2; используемые водород-катионитовые фильтры выполняют с площадью фильтрования не менее 7 м
2, диаметром не менее 3000 мм и высотой загрузки сульфоуглем, равной 2500 мм, причем фильтр оснащен верхним распределительным устройством в виде лучевой, равномерно распределяющей поток воды по поверхности фильтрующего материала системы, а внутреннюю поверхность фильтра выполняют с гуммировочным покрытием из резины, при этом производительность фильтра составляет не менее 80 т/ч, а скорость фильтрования - не менее 13 м/час; используемые саморегулирующиеся буферные фильтры загружены сульфоуглем с высотой слоя загрузки 2000 мм и выполнены с верхним распределительным устройством в виде "стакан в стакане", причем производительность одного фильтра составляет не менее 180 м
3/час, а скорость фильтрования - не менее 25 м/ч; используемый декарбонизатор выполнен с нижним патрубком подвода воздуха, брызгоотделителем и патрубком отвода декарбонизированной воды, который соединяют с баком сбора этой воды емкостью не менее 400 м
3 используют двухступенчатый натрий-катионитовый фильтр с верхним, состоящим из лучей и нижним распределительными устройствами, причем первую ступень этого фильтра выполняют составной из трех фильтров диаметром 3000 мм и загруженной фильтрующим материалом с высотой слоя 1900 мм, при этом производительность фильтра составляет не менее 90 м
3/час, а скорость фильтрования - не менее 25 м/час, а вторую ступень фильтра выполняют составной из двух фильтров диаметром 2600 мм, загруженной фильтрующим материалом с высотой слоя 1200 мм, причем фильтр оснащен верхним распределительным устройством и скорость фильтрования составляет не менее 34 м/час, при этом во всех ионообменных фильтрах химической очистки воды на нижнем дренажном устройстве располагают слой антрацита высотой, превышающей уровень расположения лучей с перфорацией не менее чем на 10 см.
Химически очищенную воду могут подавать в парогенератор с температурой 25 - 30
oC, причем часть химически очищенной воды направляют на охладители отбора проб непрерывной и периодических продувок котлов, а оттуда - в головку деаэратора, другую часть химически очищенной воды направляют в охладитель самотечного конденсата, в котором используют тепло парового конденсата, а выходящую из охладителя воду разделяют на два потока, один из которых, нагретый до 90
oC, подают в головку деаэратора, а другой подают на охладитель непрерывной продувки, используя тепло продувочных вод из сепаратора непрерывной продувки, а затем химически очищенную воду пропускают через охладитель выпара деаэратора, затем подают ее в головку деаэратора и осуществляют барбатирование химически очищенной воды паром, нагревая ее до температуры, близкой к насыщению и удаляют из воды газы O
2, CO, а сетевую теплофикационную воду подают на сетевые насосы, затем через подогреватели сетевой воды в теплосеть, при этом при ремонте подогревателей химически очищенной воды осуществляют переключение подогревателей сетевой воды на нагрев химически очищенной воды.
Пар из котлов по коллекторам могут подавать в паропроводы, причем часть пара из коллекторов через редуцирующее устройство с давлением P = 4 кгс/см
2 подают на подогреватель сетевой воды, на подогреватель химически очищенной воды, на подогреватель топливного газа, на обогрев сепаратора топливного газа и в деаэраторы.
При наличии излишков отработанного пара, часть его могут подавать на подогреватели химически очищенной воды и на подогреватели сетевой воды, а в них конденсат направляют в конденсаторные баки, откуда конденсаторными насосами откачивают на очистку конденсата.
При работе подогревателя химически очищенной воды и подогревателей сетевой воды на редуцированном паре с котлов, по крайней мере, часть конденсата с температурой 90
oC могут направлять непосредственно в головку деаэратора для замещения эквивалентного количества нагретой химически очищенной воды.
Подогреватели сетевой и химически очищенной воды могут выполнять в виде блока пароводяного и водоводяного теплообменников, причем вначале в пароводяном теплообменнике конденсируют пар, при этом уровень конденсата в теплообменнике поддерживают регулятором уровня, а затем конденсат направляют в водоводяной теплообменник и переохлаждают его до температуры 80 - 90
oC, при этом химически очищенную или сетевую воду вначале пропускают через водоводяной теплообменник, а затем через пароводяной.
В качестве парогенератора могут использовать паровую котельную, а паровой конденсат по трубопроводам подают на распределительную гребенку, причем используют конденсат с общей жесткостью 100 мг-экв/кг содержанием Fe в пересчете на Fe
+3 до 180 мг/кг, содержанием кремниевой кислоты до 350 мг/кг, содержанием масел до 80 мг/кг и величиной pH до 8,0 ед, причем при несоответствии конденсата указанным параметрам его направляют в дренаж, а с распределительной гребенки конденсат направляют последовательно в бак отстойник и бак сбора отстоявшегося от нефтепродуктов чистого конденсата, причем по мере всплывания при отстое конденсата на поверхность масла осуществляют сбор его с помощью улавливающей воронки, при этом в обоих баках поддерживают заданный объем жидкости за счет разности уровней переливных корыт - заполняющих патрубков, после чего чистый конденсат с содержанием нефтепродуктов 10 - 15 мг/кг с помощью насосов подают через узел регулирования, в котором распределяют потоки на технологическую обработку и взрыхление фильтров трех ступеней обезмасливания, на осветлительные фильтры, загруженные антрацитом, в которых производят удаление взвешенных механических частиц и нефтепродуктов до 4 - 5 мг/кг, после чего конденсат направляют на четыре параллельно соединенных сорбционных фильтра первой ступени, загруженных активированным углем, а затем - на четыре сорбционных фильтра второй ступени обезмасливания конденсата до содержания в нем масел не более 0,05 мг/кг, и обезмасленный конденсат с температурой 85
oC направляют в межтрубное пространство теплообменников, по которым пропускают холодную сырую воду, используемую для технологических нужд химической очистки воды и осуществляют охлаждение конденсата до температуры 40
oC, после чего направляют его в бак обезмасленного конденсата, откуда насосами прокачивают конденсат на обессоливающую установку, причем температуру обезмасленного конденсата поддерживают в пределах от 35
oC до 40
oC и направляют его сначала в водород-катионитовые фильтры, в которых в качестве фильтрующего материала используют высокоосновной катионит КУ-2,8 с высотой слоя загрузки 1,5 м и скорость фильтрования составляет 35 м/час, причем периодически осуществляют восстановление обменной способности фильтров путем регенерации фильтрующего материала 3 - 4% раствором серной кислоты, а после водород-катионитовых фильтров конденсат направляют в анионитовые фильтры, в которых в качестве фильтрующего материала используют высокоосновной анионит АВ-17-8 и производят удаление из конденсата соединений кремниевой кислоты, причем периодически осуществляют восстановление обменной емкости анионитовых фильтров путем пропускания через фильтрующий слой анионита 3 - 5% раствора едкого натрия, а после анионитовых фильтров очищенный конденсат с содержанием кремниевой кислоты не более 150 мг/кг, железа (в пересчете на Fe
+3) не более 100 мг/кг, нефтепродуктов - не более 0,5 мг/кг и общей жесткостью не большей 10 мг/кг направляют в бак запаса конденсата, откуда прокачивают на ТЭЦ и паровую котельную и на котлы-утилизаторы, причем для коррекционной обработки обессоленного конденсата до величины pH 8,5 - 9,5 и снижения коррозии металла трубопроводов в коллектор дозировано подают 1% раствор аммиака насосами-дозаторами.
Используемые при чистке конденсата осветлительные фильтры могут выполнять двухкамерными, состоящими из корпуса, нижнего и верхнего дренажного распределительных устройств, причем внутри корпуса жестко прикреплена глухая плоская горизонтальная перегородка, разделяющая его на две камеры, и анкерные трубчатые связи, по которым осуществляют отвод воздуха из нижней камеры в верхнюю и поддержание в камерах общего давления, при этом верхнее дренажное распределительное устройство выполнено в виде воронки для равномерного распределения конденсата по поверхности фильтрующего материала, в качестве которого используют антрацит, высота слоя которого в одной камере составляет 0,9 м при величине зерен 2 - 6 мм, причем при заполнении фильтра фильтрующим материалом сначала производят его укладку в нижнюю камеру, а затем - в верхнюю, а нижнее распределительное устройство выполнено в виде коллектора, к которому прикреплены тридцать два луча с щелевыми отверстиями шириной 0,25 - 0,4 мм, которые закрывают перфорированными пластинами для исключения уноса фильтрующего материала; толщина слоя активированного угля фильтров 1 ступени составляет 2,5 м при величине зерен от 2 до 6 мм, причем фильтры оснащены верхним и нижним распределительными устройствами, верхнее из которых выполнено в виде лучей для равномерного распределения потока конденсата по всей поверхности фильтрующего материала, а нижнее распределительное устройство - в виде коллектора, который располагают параллельно днищу и в который вставляют распределительные трубы с отверстиями по нижним образующим диаметром 8 мм, перекрываемыми желобообразной пластиной с щелью шириной 0,25 - 0,4 мм для исключения попадания активированного угля в конденсат; при подаче конденсата на обессоливающую установку используют, например, насосы марок К 100, 65, 200, СУХЛУ производительностью не менее 100 м
3/час и давлением P = 5,0 кгс/см
2; водород катионитовые и анионитовые фильтры выполнены в виде однокамерных, имеющих производительность 115 м
3/час цилиндрических аппаратов, корпус каждого из которых диаметром 2,6 м оснащен верхним и нижним лазами, штуцерами для гидроперегрузки и верхним и нижним распределительными устройствами, верхнее из которых выполнено в виде "стакана в стакане", а нижнее - в виде коллектора, в который вставляют распределительные трубки - лучи с отверстиями, по нижней образующей перекрытыми пластиной, имеющей щель шириной 0,25 - 0,4 мм.
Технический результат, обеспечиваемый приведенными совокупностями признаков, состоит в повышении экономичности за счет снижения потребности в приобретении пара на стороне и использования в отдельных технологических процессах возвратного конденсата и пара собственной выработки, себестоимость которого ниже стоимости приобретаемого на стороне пара до 50%, сокращении количества сжигаемых на факеле топливных газов и улучшении экологической обстановки в регионе.
Способ осуществляют следующим образом.
Исходную нефть направляют на блок электрообессоливания и обезвоживания. Затем подают на блок атмосферной или атмосферно-вакуумной перегонки, после чего на блок гидроочистки и/или защелачивания, откуда дизельную фракцию подают в блок компаундирования. При этом используемый в технологических процессах пар, по крайней мере, частично получают путем сжигания содержащегося в нефти попутного газа и/или технологического газа термических процессов и/или термодеструктивных процессов, и/или промежуточных продуктов, который подают в сеть с температурой 50 - 70
oC и давлением 3 - 5 кг/см
2, подогревают его до температуры не ниже 100
oC и 60 - 85% подают на сжигание для получения пара в технологических процессах, а 15 - 40% газа подают на сжигание в парогенераторе для получения пара нагреванием возвратного парового конденсата с добавлением нагретой химически очищенной сырой воды в количестве, необходимом для возмещения невозвращаемого конденсата, и для подогрева химически очищенной сырой воды и/или исходной нефти используют остаточную теплоту отработанного в технологических процессах перегонки нефти пара, и/или парового конденсата.
Отдельные операции способа проводят согласно описанным выше технологическим вариантам.
Режимные условия проведения процессов представлены в таблице.
Исходное сырье - нефть Шкаповского месторождения, содержание серы - 2,2 %.
Исходную нефть направляют на блок электрообессоливания и обезвоживания. Затем подают на блок атмосферной или атмосферно-вакуумной перегонки. Полученную дизельную фракцию направляют в блок гидроочистки. Часть прямогонной фракции дизельного топлива, вакуумного соляра подвергают защелачиванию в реакторах раствором NaOH.
Предусмотрена подача пара в атмосферную колонну установок AT и АВТ, в стрипинг-секции (или отпарные колонны) основной колонны К2 этих установок, на гидроочистки керосиновых фракций в отпарной колонне установок гидроочистки, в качестве теплоносителя для поддержания необходимой температуры низа колонн, в секции или в блоки очистки углеводородных газов от сероводорода, на распыл топлива в технологических печах, в вакуумсоздающую систему блока АВТ, в вакуумную колонну как отпаривающий агент.
Данный способ позволяет получить дизельное топливо в соответствии с требованиями ГОСТа со стабильно высокими эксплуатационными качествами при снижении технологических энергозатрат на 5% на различных этапах разгонки, гидроочистки дизельного топлива, при этом снижается содержание серы в исходной дизельной фракции с 1 мас.% до 0,05 мас.%, что улучшает экологическую обстановку в регионе и существенно улучшает качество нефтепродуктов, благоприятно сказывается на работе двигателей, автотранспортной техники, при этом стоимость пара собственной выработки составляет 50% от стоимости приобретаемого на стороне пара, что приводит к значительному снижению себестоимости продукции и обеспечивает рациональное использование тепла отходящих потоков переработки, сокращению сжигаемого на факеле количества топливного газа и улучшению экологической обстановки.
Формула изобретения
1. Способ получения дизельного топлива из малосернистых, и/или сернистых, и/или высокосернистых нефтей, включающий термические и термодеструктивные технологические процессы электрообессоливания и обезвоживания нефти в электродегидраторах с системой сетчато, и/или ячеисто не менее чем в двух уровнях расположенных электродов, перекрывающих в совокупности высотный диапазон электродегидратора преимущественно в верхней половине высоты его корпуса, причем градиент высоты между уровнями электродов на пути восходящего потока нефти составляет 0,05 - 0,1 условного отрезка пути, совпадающего со средним вектором перемещения потока нефти в зоне наибольшего миделя электродегидратора, проходимого потоком за час перемещения со средней скоростью процесса обессоливания, атмосферной и/или атмосферно-вакуумной перегонки обессоленной нефти с использованием колонн атмосферной перегонки, снабженных пакетами перекрестноточных насадок, размещенными с высотным или высотноугловым смещением адекватно температурным зонам конденсации паров, при этом, по крайней мере, часть пакетов размещают в зоне конденсации дизельной фракции и перегонку проводят при подаче нефти в колонны, по крайней мере, через два патрубка, тангенциально расположенные в корпусе колонны в зоне питания, снабженной внутренним цилиндрическим отражателем потока, диаметр которого соотносится с диаметром корпуса колонны в зоне питания как (0,59 - 0,75) : 1, а высотный диапазон ввода потоков нефти принимают равным (0,21 - 0,28) высоты колонны от отметки низа днища, вывод дизельной фракции с температурой кипения 240 - 350
oС или разделенной дизельной фракции 240 - 300
oС и 300 - 350
oС ведут в высотном интервале колонны первичной разгонки, составляющем (0,32 - 0,62), считая от низа днища колонны или с превышением соответственно нижней и верхней отметки диапазона вывода на величину (0,06 - 0,12) и (0,23 - 0,41) от высоты колонны относительно оси ввода патрубков, подающих нефть в зону питания колонны, защелачивания полученных дизельных фракций с последующим компаундированием соответствующих фракций с подачей, по крайней мере, в электродегидраторы, колонны атмосферной и/или атмосферно-вакуумной перегонки и реакторы гидроочистки технологической теплоты, в том числе с использованием в качестве теплоносителя пара, получаемого в парогенераторах путем нагрева воды за счет сжигания в последних, по крайней мере, газообразного и/или жидкого топлива и образованием конденсата, по крайней мере, частично возвратного, в результате отбора теплоты при протекании технологических процессов перегонки нефти, отличающийся тем, что используемый в технологических процессах пар, по крайней мере, частично получают путем сжигания содержащегося в нефти попутного газа и/или технологического газа термических процессов и/или термодеструктивных процессов, и/или промежуточных продуктов, который подают в сеть с температурой 50 - 70
oС и давлением 3 - 5 кг/см
2, подогревают его до температуры не ниже 100
oС и 60 - 85% подают на сжигание для получения пара в технологических процессах, а 15 - 40% газа подают на сжигание в парогенераторе для получения пара нагреванием возвратного парового конденсата с добавлением нагретой химически очищенной сырой воды в количестве, необходимом для возмещения невозвращаемого конденсата и для подогрева химически очищенной сырой воды и/или исходной нефти используют остаточную теплоту отработанного в технологических процессах перегонки нефти пара, и/или парового конденсата.
2. Способ по п.1, отличающийся тем, что электрообессоливание и обезвоживание нефти проводят в электродегидраторах с горизонтально-ориентированным корпусом цилиндрической или составной конфигурации и рабочим объемом 80 - 200 м
3, или электрообессоливание и обезвоживание нефти проводят в электродегидраторах с корпусом сферической, или сфероидальной, и/или эллипсовидной, и/или овоидальной, и/или каплевидной формы, или электрообессоливание и обезвоживание нефти производят в электродегидраторах сфероидальной, и/или эллипсоидальной, и/или овоидальной, и/или каплевидной, и/или составной с цилиндрическим корпусом и выпуклокриволинейным торцовыми участками, и/или тороидальной формы, или электрообессоливание нефти проводят в электродегидраторах, продольную ось корпуса, по крайней мере, части которых ориентируют вертикально, или горизонтально, или под углом к горизонту.
3. Способ по п.1, отличающийся тем, что подачу нефти в колонны атмосферной и/или атмосферно-вакуумной перегонки осуществляют через патрубки, расположенные с углом разведения точек пересечения осей патрубков с корпусом колонны в интервале 30 - 180
oС с односторонней тангенциальной закруткой подаваемого потока, или подачу нефти в колонну атмосферной и/или атмосферно-вакуумной перегонки осуществляют через патрубки, ось и внутренняя горловина одного из которых ориентируют поток подаваемой через него нефти в зоне питания колонны непосредственно на пересечение с аналогичным потоком, подаваемым через другой патрубок преимущественно в зоне выхода его из внутренней горловины последнего, или подачу нефти в колонну атмосферной и/или атмосферно-вакуумной перегонки осуществляют через патрубки, оси которых ориентируют параллельно касательным к корпусу внутреннего цилиндрического отражателя и радиально удалены от условной точки касания с корпусом отражателя на расстояние b, удовлетворяющее условию b

0,25 (R
k - R
o), где R
k - радиус с колонны в зоне питания, R
o - радиус отражателя, или нефть вводят в колонну через патрубки, врезанные в корпус колонны параллельно с разведением их осей на расстояние 0,5 - 0,85 диаметра колонны в зоне питания.
4. Способ по п.1, отличающийся тем, что перегонку проводят в колонне, цилиндрический отражатель в зоне питания которой устанавливают эксцентриситетно продольной оси колонны, или перегонку проводят в колонне атмосферной и/или атмосферно-вакуумной перегонки, цилиндрический отражатель которой выполняют с переменным радиусом кривизны в поперечном сечении, или перегонку проводят в колонне атмосферной и/или атмосферно-вакуумной перегонки, цилиндрический отражатель которой соединяют с корпусом колонны кольцевой мембраной плоской и/или ломаной, и/или криволинейной, и/или комбинированной конфигурации в поперечном сечении, перегонку проводят в колонне, отражатель потока нефти которой выполняют в виде двухлепестковой симметричной оболочки переменной кривизны или составной конфигурации, по крайней мере, в поперечном сечении, или при перегонке используют колонну атмосферной и/или атмосферно-вакуумной перегонки, снабженную пакетами перекрестноточных насадок, которые выполняют из пространственно деформированных элементов из листовой нержавеющей стали, с обеспечением перекрытия высотой пакетов температурных градиентов 2 - 8
oС по высоте колонны, и площади прохода паров через них, составляющей 38 - 81% относительно поперечного сечения колонны; перегонку в колонне атмосферной и/или атмосферно-вакуумной перегонки проводят при скорости прохождения паров разгоняемых фракций, по крайней мере, равной 1,0 - 1,7 м/с.
5. Способ по п.1, отличающийся тем, что при защелачивании используют 3,0 - 5,0% раствора едкого натра с подачей дизельной фракции, не менее чем в два реактора параллельными потоками, обработку дизельной фракции раствором едкого натра проводят постадийно, при этом первую стадию осуществляют инжектированием через инжектор, установленный вне реактора защелачивания при соотношении объемов дизельной фракции и едкого натра, равном 0,5 - 2,0 и полученную смесь вводят в придонный слой раствора едкого натра и проводят вторую стадию с использованием маточника, состоящего из раздаточного коллектора, снабженного системой распределительных труб с избирательной системой перфорации, при заполнении раствором едкого натра объема реактора на (0,5 - 0,75) его высоты и скорости ввода дизельной фракции, равной 0,6 - 7,9 м/с, причем подачу смеси дизельной фракции с раствором щелочи в реактор защелачивания ведут импульсами, при этом при защелачивании высокосернистых фракций используют 3,0 - 5,0% раствора едкого натра при подаче дизельной фракции не менее, чем в два реактора параллельными потоками, или при защелачивании используют, по крайней мере, один реактор с подачей дизельной фракции через внешний инжектор, выходное сопло которого устанавливают с отрицательным перепадом высоты сопла на высоту не менее 1 м относительно нижней отметки щелочного раствора в реакторе защелачивания, или при защелачивании используют, по крайней мере, один реактор с распределительными трубами, подающими дизельную фракцию, которые размещают на высоте 0,05 - 0,75 от высоты раствора едкого натра, или при защелачивании используют, по крайней мере, один реактор, в котором перфорационные отверстия в раздаточных трубах маточника выполняют с переменным шагом и/или диаметром, и/или с эффективной площадью истечения потока с возрастанием перечисленных параметров по мере удаления от зоны ввода раздаточного коллектора в резервуар защелачивания адекватно падению гидравлического давления в элементах системы ввода дизельного дистиллята, или при защелачивании используют, по крайней мере, один реактор, в котором, по крайней мере, часть перфорационных отверстий ориентируют на ось истечения потока по сторонам горизонта, или при защелачивании используют, по крайней мере, один реактор, в котором, по крайней мере, часть перфорационных отверстий распределительных труб ориентируют под нисходящими углами к горизонту, или при защелачивании используют, по крайней мере, один реактор, в котором, по крайней мере, часть перфорационных отверстий располагают по спирали с постоянным или переменным шагом, при этом перфорационные отверстия, по крайней мере, частично выполняют круглоцилиндрическими, и/или овоидальными, и/или комбинированных конфигураций, или щелевидными, или при защелачивании используют, по крайней мере, один реактор, в котором раздаточный коллектор маточника выполняют в виде трубы переменного сечения по длине реакторе защелачивания, а подачу смеси дизельной фракции и раствора щелочи в реактор защелачивания ведут с переменной скоростью в различных зонах реактора, или при защелачивании используют, по крайней мере, один реактор защелачивания, в котором колебание высоты слоя жидкости в котором при вводе-выводе дизельной фракции выдерживают в пределах 16 - 20% от исходного уровня раствора едкого натра в реакторе к моменту начала процесса защелачивания, или при защелачивании используют, по крайней мере, один реактор защелачивания, который выполняют горизонтальным с круглоцилиндрическим, или эллипсоидальным, или овоидальным, или каплевидным поперечным сечением, или при защелачивании используют, по крайней мере, один реактор защелачивания, который выполняют с ломаной, или криволинейной осью в плане, или тороидальным в виде замкнутого или разомкнутого тора, или при защелачивании используют, по крайней мере, один реактор, который выполняют с наклоном к горизонту или не менее чем с одним изломом продольной оси в вертикальной плоскости, или при защелачивании используют, по крайней мере, один реактор защелачивания, который снабжают экраном, горизонтально ориентированным или наклоненным, открытым, по крайней мере, с одного торца, погруженным в пределах верхней трети в защелоченную фракцию, или при защелачивании используют, по крайней мере, один реактор защелачивания и/или резервуар-отстойник, который выполняют с большей осью поперечного сечения, ориентированной вертикально или наклонно, при этом после защелачивания обработанную раствором щелочи дизельную фракцию выводят из верхней зоны реактора защелачивания и подвергают водной отмывке и/или отстою в емкости для водной отмывки, и/или в резервуаре-отстойнике, причем при водной отмывке используют не менее одного дополнительного резервуара-отстойника последовательно сообщенного с первым, или при отстое используют, по крайней мере, один резервуар-отстойник, который выполняют горизонтально или полого наклоненным с круглоцилиндрическим или эллипсоидальным поперечным сечением, или при отстое используют, по крайней мере, один резервуар-отстойник, который выполняют с ломаной или криволинейной осью в плане, или тороидальным в виде замкнутого или разомкнутого тора, или при отстое используют, по крайней мере, один резервуар-отстойник, который снабжают экраном-перегородкой, открытым с одного торца, погруженным в приповерхностный слой дизельной фракции, горизонтально ориентированным или наклоненным и/или вертикальным, или при отстое используют, по крайней мере, один резервуар-отстойник, который не менее, двумя парами электродов, интенсифицирующими осаждение взвесей и примесей из дизельной фракции, а очищенную в реакторе защелачивания дизельную фракцию подают в не менее чем один резервуар-отстойник, выдерживают в нем не менее 50 - 80 мин и направляют на компаундирование.
6. Способ по п.1, отличающийся тем, что компаундирование дизельной фракции проводят в одну или две, или три стадии, при этом компаундирование на первой стадии проводят либо непосредственно в колонне атмосферной и/или атмосферно-вакуумной перегонки путем добавления в дизельную фракцию первого потока прямогонной керосиновой фракции и/или в технологическом трубопроводе, соединяющем колонну атмосферной и/или атмосферно-вакуумной перегонки с реактором защелачивания путем подачи прямогонной керосиновой фракции, компаундирование на второй стадии проводят после защелачивания дизельной фракции непосредственно в резервуаре хранения дизельного топлива путем подачи прямогонной и/или гидроочищенной керосиновой фракции под избыточным давлением в зону, расположенную в нижней четверти высоты резервуара, преимущественно, с наклоном струи, направленной к днищу резервуара под углом не менее 30
o к горизонту, причем при компаундировании в технологическом трубопроводе подачу керосиновой фракции и/или вакуумного соляра ведут поэтапно или дискретно не менее, чем через два патрубка, врезанных в основной трубопровод с различных сторон, и/или разнесенных по длине и ориентированных под острым углом по ходу смешиваемых дистиллятов, или при компаундировании используют патрубки для ввода компонентов, подмешиваемых к дизельной фракции, врезанные в основной трубопровод и обеспечивающие однонаправленную или встречнонаправленную тангенциально вихревую закрутку смешиваемых потоков, или при компаундировании в трубопроводе во внутреннем сечении его на участке компаундирования первой стадии непосредственно после зоны врезки патрубков, подающих подмешиваемые к дизельной фракции керосиновой и/или вакуумно-соляровые компоненты, устанавливают не менее одной зафиксированной крыльчатки, или при компаундировании в трубопроводе, во внутреннем сечении его устанавливают не менее двух крыльчаток со встречнонаправленной закруткой лопастей, зафиксированных относительно корпуса трубопровода или неподвижно зафиксированных одна относительно другой с возможностью свободного совместного вращения при возникновении дисбаланса, создаваемых или вихревых противотоков, интенсифицирующих процесс компаундирования дизельного дистиллята, причем при выводе дизельной фракции из колонны атмосферной и/или атмосферно-вакуумной перегонки отбор избыточной результирующей теплоты ведут преимущественно перед началом первой стадии компаундирования; вторую стадию компаундирования ведут в резервуаре хранения дизельного топлива путем прямого смешивания подаваемых в резервуар потоков дизельной фракции и керосиновой фракции, либо через инжектор, вводимый в придонную зону резервуара при раздельной во времени подаче дизельной фракции и керосиновой фракции, или на второй стадии компаундирования используют инжектор, введенный в резервуар и зафиксированный на жестком внутреннем патрубке в нижней трети центральной зоны резервуара с восходящим наклоном инжектируемого потока; на первой стадии компаундирования в дизельную фракцию и/или в ее смесь с прямогонной керосиновой фракцией добавляют вакуумный соляр, выводимый из вакуумной колонны атмосферно-вакуумной перегонки, а на второй стадии компаундирования используют резервуар, инжектор в который вводят посредством тангенциально установленного патрубка, или компаундирование в резервуаре хранения дизельного топлива проводят посредством, по крайней мере, двух инжекторов, которые фиксируют на тангенциально установленных патрубках со встречной закруткой потоков, или компаундирование в резервуаре хранения дизельного топлива проводят посредством не менее двух инжекторов, подвижно с возможностью реактивного вращения, установленных в нижней или придонной части резервуара хранения дизельного топлива.
7. Способ по п.1, отличающийся тем, что используют сырую воду из проточного и/или непроточного водоема, причем нагрев химически очищаемой воды, производят до или после выполнения очистки сырой воды от взвесей и после очистки возвратного парового конденсата от масляных загрязнений.
8. Способ по любому из пп.1 - 7, отличающийся тем, что используют воду, например, из реки Урал с общей жесткостью 4,8 мг-экв/кг, общей щелочностью 3,4 мг-экв/кг, величиной рН 8,1 и содержанием железа 628 мг/кг, сульфатов (SO
4-2) 1,78 мг-экв/кг, кремниевой кислоты 0,15 мг-экв/кг, кальция (Ca
+2) 3,0 мг-экв/кг, магния (Mg
+2) 1,8 мг-экв/кг, и окисляемостью пермонганатной 3,84 - 5,12 кг/кг по O
2, причем сырую воду на химическую очистку подают под давлением до 5 кг/см
2 на насосы сырой воды, по крайней мере, один из которых оставляют резервным, а затем прокачивают воду через два теплообменника с неподвижными трубчатыми решетками и подогревают воду до температуры 25 - 30
oС, причем, по крайней мере, в одном теплообменнике используют возвратный конденсат с температурой 80 - 85
oС, при этом количество сырой воды, пропускаемой через этот теплообменник, регулируют до захолаживания конденсата до температуры 25 - 35
oС, а остальную часть сырой воды пропускают через другой теплообменник и нагревают ее до температуры 25 - 30
oС за счет использования в этом теплообменнике в качестве теплоносителя теплофикационной воды, имеющей температуру отопительной воды в соответствии с сезоном, а после подогрева воду направляют на фильтрование в механические фильтры с двухслойной загрузкой кварцевым песком и антрацитом и осуществляют удаление из воды взвешенных частиц до достижения водой прозрачности не менее 40 см, а затем осветленную воду подают на фильтры водородкатионитовые, загруженные сульфоуглем и осуществляют удаление из воды солей жесткости до 1 - 2 мг-экв/кг постоянной и разрушение бикарбонат иона со снижением только карбонатной щелочности до 0,7 мг-экс/кг, после чего умягченную воду подают на предохраняющие фильтрат от проскоков кислотности буферные саморегулирующиеся фильтры, загруженные сульфоуглем, а затем воду направляют для удаления свободной углекислоты в декарбонизатор, загруженный кольцами Рашига, и осуществляют отделение воздуха с углекислым газом, который отводят в атмосферу, и подачу декарбонизированной воды самотеком в бак, после чего эту воду насосами прокачивают через двухступенчатые натрийкатионитовые фильтры, причем в фильтрах первой ступени производят удаление катионов жесткости до 0,1 мг-экв/кг, а во второй ступени осуществляют удаление катионов жесткости Ca
+2, Mg
+2 до 0,01 мг-экв/кг с получением химически очищенной воды прозрачностью не менее 40 см, общей жесткостью 2 - 5 мг-экв/кг, содержанием железа в пересчете на Fe
+3 до 300 мг/кг и величиной рН 8,0, после чего химически очищенную воду подают в баки, а затем насосами откачивают в парогенератор.
9. Способ по п.7, отличающийся тем, что, по крайней мере, в период паводка осуществляют предварительную очистку воды, которую производят с использованием не менее двух осветлителей производительностью 250 м
3/ч, двух мешалок известкового молока емкостью 15 м
3 каждая, двух мерников коагулянта по 10 м
3 каждый, ячейки мокрого хранения извести, преимущественно известкового теста емкостью 100 м
3, ячейки известкового молока емкостью 60 м
3 и насосов-дозаторов и/или центробежных насосов с дополнительными регулирующими заслонками, а химическую очистку воды производят только с использованием натрийкатионитовых фильтров, в которых производят также регенерацию фильтрующего материала солевым раствором с концентрацией 6 - 8%.
10. Способ по любому из пп.7 и 8, отличающийся тем, что для химической очистки воды используют механические фильтры в виде цилиндрических сосудов с внутренним антикоррозионным покрытием, преимущественно из эпоксидной смолы, с двумя стальными днищами сферической формы, в верхнем из которых размещен штуцер подачи исходной воды и верхнее распределительное устройство в виде лучей из полимерного материала для распределения воды по сечению фильтра, а на нижнем днище расположена дренажная система в виде коллектора со щелевыми трубками из нержавеющей стали, по оси которых образованы отверстия, перекрываемые кожухами со щелями шириной 0,25 - 0,4 мм, причем в верхней части корпуса фильтра образован люк для осмотра поверхности фильтрующего материала, а в нижней - лаз для монтажа и ремонта верхней и нижней дренажных систем, при этом на корпусе фильтра на уровне щелевых трубок расположен штуцер для гидроперегрузки, к фильтру подведены трубопроводы исходной воды, взрыхления, воздушник верхней и нижней дренажных систем, подсоединены манометры на входе и выходе коллектора, пробоотборники и вентили, а фильтрующую засыпку выполняют двухслойной, состоящей из слоя кварцевого песка высотой 700 мм и объемом 6,4 м
3 и слоя антрацита высотой 500 мм и объемом 4,6 м
3, при этом производительность фильтров устанавливают с учетом расхода воды на собственные нужды и приготовление регенерационных растворов не менее 200 м
3/ч, скорость фильтрования при работе всех фильтров - не менее 7 м/ч и максимальной во время взрыхляющей промывки - не менее 10 м/ч при расходе на взрыхление сжатого воздуха 5 м
3/ч и давлении до 1,5 кгс/см
2; используемые водородкатионитовые фильтры выполняют с площадью фильтрования не менее 7 м
2, диаметром не менее 3000 мм и высотой загрузки сульфоуглем, равной 2500 мм, причем фильтр оснащен верхним распределительным устройством в виде лучевой, равномерно распределяющей поток воды по поверхности фильтрующего материала системы, а внутреннюю поверхность фильтра выполняют с гуммировочным покрытием из резины, при этом производительность фильтра составляет не менее 80 т/ч, а скорость фильтрования - не менее 13 м/ч; используемые саморегулирующиеся буферные фильтры загружены сульфоуглем с высотой слоя загрузки 2000 мм и выполнены с верхним распределительным устройством в виде "стакан в стакане", причем производительность одного фильтра составляет не менее 180 м
3/ч, а скорость фильтрования - не менее 25 м/ч; используемый декарбонизатор выполнен с нижним патрубком подвода воздуха, брызгоотделителем и патрубком отвода декарбонизированной воды, который соединяют с баком сбора этой воды емкостью не менее 400 м
3; используют двухступенчатый натрийкатионитовый фильтр с верхним, состоящим из лучей и нижним распределительными устройствами, причем первую ступень этого фильтра выполняют составной из трех фильтров диаметром 3000 мм и загруженной фильтрующим материалом с высотой слоя 1900 мм, при этом производительность фильтра составляет не менее 90 м
3/ч, а скорость фильтрования - не менее 25 м/ч, а вторую ступень фильтра выполняют составной из двух фильтров диаметром 2600 мм, загруженной фильтрующим материалом с высотой слоя 1200 мм, причем фильтр оснащен верхним распределительным устройством и скорость фильтрования составляет не менее 34 м/ч, при этом во всех ионообменных фильтрах химической очистки воды на нижнем дренажном устройстве располагают слой антрацита высотой, превышающей уровень расположения лучей с перфорацией не менее, чем на 10 см.
11. Способ по п.7, отличающийся тем, что химически очищенную воду подают в парогенератор с температурой 25 - 30
oС, причем часть химически очищенной воды направляют на охладители отбора проб непрерывной и периодических продувок котлов, а оттуда - в головку деаэратора, другую часть химически очищенной воды направляют в охладитель самотечного конденсата, в котором используют тепло парового конденсата, а выходящую из охладителя воду разделяют на два потока, один из которых, нагретый до 90
oС, подают в головку деаэратора, а другой подают на охладитель непрерывной продувки, используя тепло продувочных вод из сепаратора непрерывной продувки, а затем химически очищенную воду пропускают через охладитель выпара деаэратора, затем подают ее в головку деаэратора и осуществляют барбатирование химически очищенной воды паром, нагревая ее до температуры, близкой к насыщению и удаляют из воды газы O
2, CO, а сетевую теплофикационную воду подают на сетевые насосы, затем через подогреватели сетевой воды в теплосеть, при этом при ремонте подогревателей химически очищенной воды осуществляют переключение подогревателей сетевой воды на нагрев химически очищенной воды.
12. Способ по любому из пп.7 - 11, отличающийся тем, что пар из котлов по коллекторам подают в паропроводы, причем часть пара из коллекторов через редуцирующее устройство с давлением Р = 4 кгс/см
2 подают на подогреватель сетевой воды, на подогреватель химически очищенной воды, на подогреватель топливного газа, на обогрев сепаратора топливного газа и в деаэраторы.
13. Способ по любому из пп.7 - 12, отличающийся тем, что при наличии излишков отработанного пара, часть его подают на подогреватели химически очищенной воды и на подогреватели сетевой воды, а в них конденсат направляют в конденсаторные баки, откуда конденсаторными насосами откачивают на очистку конденсата.
14. Способ по п.13, отличающийся тем, что при работе подогревателя химически очищенной воды и подогревателей сетевой воды на редуцированном паре с котлов, по крайней мере, часть конденсата с температурой 90
oС направляют непосредственно в головку деаэратора для замещения эквивалентного количества нагретой химически очищенной воды.
15. Способ по п.14, отличающийся тем, что подогреватели сетевой и химически очищенной воды выполняют в виде блока пароводяного и водоводяного теплообменников, причем вначале в пароводяном теплообменнике конденсируют пар, при этом уровень конденсата в теплообменнике поддерживают регулятором уровня, а затем конденсат направляют в водоводяной теплообменник и переохлаждают его до температуры 80 - 90
oС, при этом химически очищенную или сетевую воду вначале пропускают через водоводяной теплообменник, а затем через пароводяной.
16. Способ по любому из пп.1 - 15, отличающийся тем, что в качестве парогенератора используют паровую котельную, а паровой конденсат по трубопроводам подают на распределительную гребенку, причем используют конденсат с общей жесткостью 100 мг-экв/кг, содержанием Fe в пересчете на Fe
+3 до 180 мг/кг, содержанием кремниевой кислоты до 350 мг/кг, содержанием масел до 80 мг/кг и величиной рН до 8,0, причем при несоответствии конденсата указанным параметрам его направляют в дренаж, а с распределительной гребенки конденсат направляют последовательно в бак-отстойник и бак сбора отстоявшегося от нефтепродуктов чистого конденсата, причем по мере всплывания при отстое конденсата на поверхность масла осуществляют сбор его с помощью улавливающей воронки, при этом в обоих баках поддерживают заданный объем жидкости за счет разности уровней переливных корыт - заполняющих патрубков, после чего чистый конденсат с содержанием нефтепродуктов 10 - 15 мг/кг с помощью насосов подают через узел регулирования, в котором распределяют потоки на технологическую обработку и взрыхление фильтров трех ступеней обезмасливания, на осветлительные фильтры, загруженные антрацитом, в которых производят удаление взвешенных механических частиц и нефтепродуктов до 4 - 5 мг/кг, после чего конденсат направляют на четыре параллельно соединенных сорбционных фильтра первой ступени, загруженных активированным углем, а затем - на четыре сорбционных фильтра второй ступени обезмасливания конденсата до содержания в нем масел не более 0,05 мг/кг, и обезмасленный конденсат с температурой 85
oС направляют в межтрубное пространство теплообменников, по которым пропускают холодную сырую воду, используемую для технологических нужд химической очистки воды и осуществляют охлаждение конденсата до температуры 40
oС, после чего направляют его в бак обезмасленного конденсата, откуда насосами прокачивают конденсат на обессоливающую установку, причем температуру обезмасленного конденсата поддерживают в пределах от 35 до 40
oС и направляют его сначала в водород-катионитовые фильтры, в которых в качестве фильтрующего материала используют высокоосновной катионит КУ-2,8 с высотой слоя загрузки 1,5 м и скорость фильтрования составляет 35 м/ч, причем периодически осуществляют восстановление обменной способности фильтров путем регенерации фильтрующего материала 3 - 4% раствором серной кислоты, а после водородкатионитовых фильтров конденсат направляют в анионитовые фильтры, в которых в качестве фильтрующего материала используют высокоосновной анионит АВ-17-8 и производят удаление из конденсата соединений кремниевой кислоты, причем периодически осуществляют восстановление обменной емкости анионитовых фильтров путем пропускания через фильтрующий слой анионита 3 - 5% раствора едкого натрия, а после анионитовых фильтров очищенный конденсат с содержанием кремниевой кислоты не более 150мг/кг, железа (в пересчете на Fe
+3) не более 100 мг/кг, нефтепродуктов - не более 0,5 мг/кг и общей жесткостью не большей 10 мг/кг направляют в бак запаса конденсата, откуда прокачивают на ТЭЦ и паровую котельную и на котлы-утилизаторы, причем для коррекционной обработки обессоленного конденсата до величины рН 8,5 - 9,5 и снижения коррозии металла трубопроводов в коллектор дозировано подают 1% раствор аммиака насосами-дозаторами.
17. Способ по п.16, отличающийся тем, что используемые при очистке конденсата осветлительные фильтры выполняют двухкамерными, состоящими из корпуса, нижнего и верхнего дренажного распределительных устройств, причем внутри корпуса жестко прикреплена глухая плоская горизонтальная перегородка, разделяющая его на две камеры, и анкерные трубчатые связи, по которым осуществляют отвод воздуха из нижней камеры в верхнюю и поддержание в камерах общего давления, при этом верхнее дренажное распределительное устройство выполнено в виде воронки для равномерного распределения конденсата по поверхности фильтрующего материала, в качестве которого используют антрацит, высота слоя которого в одной камере составляет 0,9 м при величине зерен 2 - 6 мм, причем при заполнении фильтра фильтрующим материалом сначала производят его укладку в нижнюю камеру, а затем - в верхнюю, а нижнее распределительное устройство выполнено в виде коллектора, к которому прикреплены тридцать два луча с щелевыми отверстиями шириной 0,25 - 0,4 мм, которые закрывают перфорированными пластинами для исключения уноса фильтрующего материала; толщина слоя активированного угля фильтров I ступени составляет 2,5 м при величине зерен 2 - 6 мм, причем фильтры оснащены верхним и нижним распределительными устройствами, верхнее из которых выполнено в виде лучей для равномерного распределения потока конденсата по всей поверхности фильтрующего материала, а нижнее распределительное устройство - в виде коллектора, который располагают параллельно днищу и в который вставляют распределительные трубы с отверстиями по нижним образующим диаметром 8 мм, перекрываемыми желобообразной пластиной с щелью шириной 0,25 - 0,4 мм для исключения попадания активированного угля в конденсат; при подаче конденсата на обессоливающую установку используют, например, насосы марок К 100, 65, 200, СУХЛУ производительностью не менее 100 м
3/ч и давлением Р = 5,0 кгс/см
2; водородкатионитовые и анионитовые фильтры выполнены в виде однокамерных, имеющих производительность 115 м
3/ч цилиндрических аппаратов, корпус каждого из которых диаметром 2,6 м оснащен верхним и нижним лазами, штуцерами для гидроперегрузки и верхним и нижним распределительными устройствами, верхнее из которых выполнено в виде "стакана в стакане", а нижнее - в виде коллектора, в который вставляют распределительные трубки - лучи с отверстиями по нижней образующей перекрытыми пластиной, имеющей щель шириной 0,25 - 0,4 мм.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3NF4A Восстановление действия патента Российской Федерации на изобретение
Извещение опубликовано: 10.11.2004 БИ: 31/2004